野中野正向调强与固定野逆向调强在全脑放疗中的剂量学差异

潘香, 李娅, 朱思瑾, 杨毅

潘香, 李娅, 朱思瑾, 杨毅. 野中野正向调强与固定野逆向调强在全脑放疗中的剂量学差异[J]. 实用临床医药杂志, 2019, 23(19): 12-16. DOI: 10.7619/jcmp.201919003
引用本文: 潘香, 李娅, 朱思瑾, 杨毅. 野中野正向调强与固定野逆向调强在全脑放疗中的剂量学差异[J]. 实用临床医药杂志, 2019, 23(19): 12-16. DOI: 10.7619/jcmp.201919003
PAN Xiang, LI Ya, ZHU Sijin, YANG Yi. Dosimetry difference between field-in-field intensity modulated radiation therapy and fixed field inversely optimized intensity modulated radiation therapy in whole brain radiotherapy[J]. Journal of Clinical Medicine in Practice, 2019, 23(19): 12-16. DOI: 10.7619/jcmp.201919003
Citation: PAN Xiang, LI Ya, ZHU Sijin, YANG Yi. Dosimetry difference between field-in-field intensity modulated radiation therapy and fixed field inversely optimized intensity modulated radiation therapy in whole brain radiotherapy[J]. Journal of Clinical Medicine in Practice, 2019, 23(19): 12-16. DOI: 10.7619/jcmp.201919003

野中野正向调强与固定野逆向调强在全脑放疗中的剂量学差异

详细信息
    通讯作者:

    李娅, E-mail: 1438954061@qq.com

  • 中图分类号: R815

Dosimetry difference between field-in-field intensity modulated radiation therapy and fixed field inversely optimized intensity modulated radiation therapy in whole brain radiotherapy

  • 摘要:
      目的  比较全脑放疗的野中野正向静态调强(FIF-IMRT)与固定野逆向优化调强(FFIO-IMRT)技术的剂量学差异。
      方法  选取需行全脑放疗患者20例,采用Pinnacle3 9.10治疗计划系统进行计划设计, 2种计划均用6 MV X射线, 处方剂量均为40 Gy, 2 Gy/次,共20次。FIF-IMRT计划选270 °、90 °为主野,适当调整准直器角度,使双眼球重叠,在每个主野方向手动添加1~2个子野降低高剂量。FFIO-IMRT计划7野均分调强,通过反复改变优化参数来达到临床要求的剂量分布。比较2种放疗计划的剂量学参数。
      结果  ① 靶区方面:与FFIO-IMRT计划相比, FIF-IMRT计划的计划靶区(PTV)的V105%D50%升高, DminDmaxV95%V110%D2%D98%降低,差异均有统计学意义(P < 0.05); FIF-IMRT计划的CI低于FFIO-IMRT, HI却高于FFIO-IMRT, 差异均有统计学意义(P < 0.05); FIF-IMRT计划子野数、机器跳数MU、治疗时间、计划设计时间均较FFIO-IMRT显著降低(P < 0.05)。②危及器官左右晶体、左右眼球、脊髓、左右视神经方面, FIF-IMRT计划低于FFIO-IMRT计划,晶体尤为明显,除左右视神经外,其他差异均有统计学意义(P < 0.05)。
      结论  ① 2种计划的靶区均达到临床剂量学要求。② FIF-IMRT计划在靶区的适形性上虽差于FFIO-IMRT计划,但在危及器官的保护方面远好于FFIO-IMRT计划。③由于FIF-IMRT计划的单次治疗时间显著减少,因此降低了器官运动带来的误差,同时减少了机器的损耗,提高了机器执行效率。④ FIF-IMRT计划设计简单易行,在基层医院也较容易实现。故全脑放疗推荐野中野正向静态调强的方式。
    Abstract:
      Objective  To compare dosimetry difference between field-in-field intensity modulated radiation therapy (FIF-IMRT) and fixed field inversely optimized intensity modulated radiation therapy (FFIO-IMRT) in whole brain radiotherapy.
      Methods  Totally 20 patients with whole brain radiotherapy were selected. The Pinnacle3 9.10 treatment planning system was used to design plan. 6 MV X-ray was used for both two plans, and the prescription dosage was 40 Gy, with 2 Gy per time for 20 times totally. FIF-IMRT plans to select 270 and 90 degrees as the main fields, adjust the collimator angle appropriately to make the eyes overlap, and manually add 1 or 2 sub-fields in each main field direction to reduce the high dose. FFIO-IMRT plans to equalize the intensity of 7 fields and achieve the clinical dose distribution by repeatedly changing the optimized parameters. The dosimetric parameters of two radiotherapy schemes were compared.
      Results  Compared with FFIO-IMRT, the V105% and D50% of the planned target area (PTV) in FIF-IMRT increased significantly, while Dmin, Dmax, V95%, V110%, D2%, D98% decreased significantly (P < 0.05). CI of FIF-IMRT was significantly lower than that of FFIO-IMRT, but HIV was significantly higher than that of FFIO-IMRT (P < 0.05). The number of planned subfields, machine hops MU, treatment time and planning design time of FIF-IMRT were significantly lower than those of FFIO-IMRT (P < 0.05). The FIF-IMRT plan was significantly lower than the FFIO-IMRT plan in terms of organ-threatening left and right crystals, right and left eyeballs, spinal cord and right optic nerves, especially in crystals. There were significant differences except for left and right optic nerves between two plans (P < 0.05).
      Conclusions  ① Both treatment plans could meet the requirements of clinical dosimetry. ② Although the CI of FIF-IMRT is worse than FFIO-IMRT, but FIF-IMRT is better in protection of organs. ③ Since the single treatment time of FIF-IMRT significantly shorten, the errors caused by organ movement are reduced, the loss of MLC is reduced, and the execution efficiency of the machine is improved. ④ The FIF-IMRT plan is simple designed and easy to implement in primary hospitals. Therefore, the FIF-IMRT is recommended for whole brain radiotherapy.
  • 图  1   FIF-IMRT计划(粗线)和FFIO-IMRT计划(细线)的靶区DVH对比

    图  2   FIF-IMRT计划(1)和FFIO-IMRT(2)的等剂量线对比

    图  3   FIF-IMRT计划和FFIO-IMRT的危及器官DVH对比

    1表示FIF-IMRT计划结果; 2表示FFIO-IMRT计划结果

    表  1   2种计划的靶区剂量学对比(x±s)(n=20)

    指标 FIF-IMRT FFIO-IMRT
    V95%/% 98.60±0.68 99.00±0.73*
    V105%/% 28.30±5.64 21.05±10.04*
    V110%/% 0.00±0.00 1.15±0.99*
    D2%/cGy 4 258.48±34.35 4 350.41±53.37*
    D50%/cGy 4 151.72±38.34 4 122.93±33.48*
    D98%/cGy 3 824.59±74.76 3 874.83±55.76*
    CI 0.79±0.05 0.81±0.05*
    HI 0.11±0.02 0.12±0.02*
    与FIF-IMRT比较, *P < 0.05。
    下载: 导出CSV

    表  2   2种计划的危及器官剂量学对比(x±s)(n=20)

    指标 FIF-IMRT FFIO-IMRT
    左晶体Dmax/cGy 361.18±31.90 673.27±60.15*
    右晶体Dmax/cGy 383.59±30.32 671.59±47.57*
    左眼球Dmax/cGy 1 066.70±239.89 1 585.15±185.46*
    右眼球Dmax/cGy 1 229.50±265.41 1 568.24±195.97*
    脊髓Dmax/cGy 3 154.81±658.45 3 695.71±83.05*
    左视神经Dmax/cGy 3 706.76±819.67 3 949.10±667.95
    右视神经Dmax/cGy 4 014.18±174.37 4 043.01±105.39
    与FIF-IMRT比较, *P < 0.05。
    下载: 导出CSV

    表  3   2种计划的机器参数对比(x±s)(n=20)

    指标 FIF-IMRT FFIO-IMRT
    子野数/个 4.75±0.79 66.25±6.19*
    机器跳数/MU 226.65±2.08 553.15±10.15*
    治疗时间/min 0.60±0.00 1.39±0.09*
    计划设计时间/min 12.57±0.46 28.21±1.31*
    与FIF-IMRT比较, *P < 0.05。
    下载: 导出CSV
  • [1]

    Patchell R A, Tibbs P A, Regine W F, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial[J]. JAMA, 1998, 280(17): 1485-1489. http://www.onacademic.com/detail/journal_1000034191124010_3da9.html

    [2]

    Kocher M, Soffietti R, Abacioglu U, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery for surgical resection of 1-3 cerebral metastases: results of the EORTC 22952-26001 study[J]. J Clin Oncol, 2011, 29 (2): 134-141. doi: 10.1200/JCO.2010.30.1655

    [3]

    Gore E M, Bae K, Wong S J, et al. Phase Ⅲ comparison of prophylactic cranial irradiation versus observation in patients with locally advanced non-small-cell lung cancer: primary analysis of radiation therapy oncology group study RTOG 0214[J]. J Clin Oncol, 2011, 29 (3): 272-278. doi: 10.1200/JCO.2010.29.1609

    [4]

    Scorsetti M, Facoetti A, Navarria P, et al. Hypofractionated stereotactic radiotherapy and radiosurgery for the treatment of patients with radioresistant brain metastases[J]. Anticancer Res, 2009, 29(10): 4259-4263. http://www.ncbi.nlm.nih.gov/pubmed/19846983

    [5]

    Li B, Yu J, Suntharalingam M, et al. Comparison of three treatment options for single brain metastasis from lung cancer[J]. Int J cancer, 2009, 90(1): 37-45. http://www.ncbi.nlm.nih.gov/pubmed/19349493

    [6]

    Colaco R, Martin P, Chiang V. Evolution of multidisciplinary brain metastasis management: case study and literature review[J]. The Yale journal of biology and medicine, 2015, 88(2): 157-65. http://europepmc.org/articles/PMC4445437/

    [7]

    Er PC, Zhang T, Wang J, et al. Brain metastasis in non-small cell lung cancer(NSCLC) patients with uncommon EGFR mutations: a report of seven cases and literature review[J]. Cancer Biology & Medicine, 2017, 14(4): 418-425. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=CJCO201704013

    [8]

    Rezvan R, Shivam M, Pooya R, et al. Brain metastasis in breast cancer: a comprehensive literature review[J]. Journal of Neuro-Oncology, 2016, 127(3): 407-414. doi: 10.1007/s11060-016-2075-3

    [9]

    Soffietti R, Rudà R, Trevisan E. Brain metast ases: current management and new developments[J]. Curr Opin Oncol, 2008, 20(6): 676-686. doi: 10.1097/CCO.0b013e32831186fe

    [10] 孙长江, 李军, 花威, 等.鼻咽癌不同射野动态调强放疗计划的临床剂量学比较[J].中华肿瘤防治杂志, 2012, 19(4): 276-279. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL201204010.htm
    [11]

    Vinai G, Ranjini T, Minesh P M, et al. Hippocampal-sparing whole-brain radiotherapy: a "How-to" technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2010, 78(4): 1244-1252. doi: 10.1016/j.ijrobp.2010.01.039

    [12] 邵琰, 王昊, 陈华, 等.适形指数和均匀性指数的临床应用[J].中华放射医学与防护杂志, 2017, 37(9): 717-721. doi: 10.3760/cma.j.issn.0254-5098.2017.09.016
    [13] 殷蔚伯, 余子豪, 徐国镇, 等.肿瘤放射治疗学[M]. 4版.北京:中国协和医科大学出版社, 2008: 149-150.
    [14]

    Esiashvili N, Koshy M, Landry J. Intensity-modulated radiat ion therapy[J]. Curr Probl Cancer, 2004, 28(2): 47-84. doi: 10.1016/j.currproblcancer.2004.01.001

    [15] 邹喜, 张纬建, 洪金省, 等.脑转移瘤三维适形放疗与调强放疗的剂量学比较研究[J].肿瘤基础与临床, 2011, 24(5): 402-405. doi: 10.3969/j.issn.1673-5412.2011.05.013
    [16] 陈杰, 朱云云, 陈明东, 等.全脑照射调强放疗和常规放疗剂量学对比[J].医疗卫生装备, 2016, 37(2): 109-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YNWS201602036.htm
    [17]

    Bese N S, Hendry J, Jeremic B. Effects of prolongation of overall treatment time due to unplanned int erruptions during radiotherapy of different tumor sites and practical methods for compensation[J]. Int J Radiat Oncol Biol Phys, 2007, 68(3): 654- 661. doi: 10.1016/j.ijrobp.2007.03.010

    [18]

    Tada E, Parent J M, Lowenstein D H, et al. X-radiation causes a prolonged reduction in cell proliferating in the dentate gyrus of adult rates[J]. Neuroscience, 2000, 99: 33-41. doi: 10.1016/S0306-4522(00)00151-2

    [19] 王宝红.海马保护技术在全脑放疗中的剂量学研究及认知功能观察[D].郑州: 郑州大学, 2017.
    [20] 杨海燕, 孙冰, 王军良, 等.全脑放疗中保护海马的调强计划设计[J].中国医学物理学杂志, 2016, 33(3): 322-324. doi: 10.3969/j.issn.1005-202X.2016.03.022
  • 期刊类型引用(0)

    其他类型引用(1)

图(3)  /  表(3)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  130
  • PDF下载量:  7
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-07-14
  • 录用日期:  2019-09-24
  • 网络出版日期:  2021-02-28
  • 发布日期:  2019-10-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭