Research progress of mechanism and application of exosomes in diabetic ulcer
-
-
下肢外周动脉疾病(PAD)较为常见,患者可表现为间歇性跛行、非典型腿痛或流动性受损[1]。部分患者可发展为晚期疾病,导致严重肢体缺血(CLI), 需要紧急血运重建,并可能导致截肢等并发症。除了其肢体相关事件的影响, PAD也与心血管事件的发生有关[2]。近年来,下肢动脉粥样硬化病变的腔内治疗技术应用广泛,如支架置入、斑块旋切、球囊扩张术等,相比于传统的大隐静脉移植术、动脉斑块剥脱术,大多数患者更愿意接受腔内微创治疗,但术后的短期、长期疗效却欠佳。有研究[3]报道支架内再狭窄(ISR)发生率可达48.2%。患者术后生活质量因ISR受到严重的影响。据统计[4]膝上动脉支架术后的患者中,术后1年ISR发生率为30.0%。自药物涂层球囊(DCB)技术应用以来,其远期通畅率佳、安全性好等优点可以弥补支架置入的缺点[5-6]。药物涂层球囊是在球囊导管的表面涂布一层药物,通过导管将抗增殖药物送达病变血管壁,抑制内膜增生,减少再狭窄,而且无异物排斥[7]。DCB早期主要用于冠状动脉疾病的治疗,在下肢动脉病变病例中使用较少[8]。本研究对本科接受DCB治疗患者早期疗效进行观察并随访,现将结果报告如下。
1. 资料与方法
1.1 一般资料
选取2016年10月—2017年10月接受DCB治疗的下肢动脉粥样硬化闭塞性疾病患者38例,其中男26例,女12例,平均年龄(65.76±11.17)岁; 高血压22例(57.89%), 糖尿病10例(26.31%), 高脂血症3例(7.89%), 脑梗死病史3例(7.89%), 冠心病8例(21.05%); 24例(68.42%)患者有吸烟史,9例(23.68%)有长期饮酒史; 38例患者中,3例为支架内再狭窄,11例累及髂动脉,累及膝下动脉5例,35例动脉狭窄或闭塞; 病变的长度平均为(150.21±72.76) mm; Fontaine分级Ⅱ期17例,Ⅲ期8例,Ⅳ期13例; Rutherford分级在4级以上表现为静息痛或足趾坏死15例, 4级22例, 3级1例。
1.2 手术方法
术前血管彩超、大血管CT血管造影(CTA)证实为下肢动脉粥样硬化病变。评估手术禁忌证并签署手术知情同意书和授权委托书。患者仰卧位,拟穿刺点常规消毒铺巾,以2%的利多卡因5 mL于腹股沟区拟穿刺点局部麻醉,选择合适的穿刺入路(对侧或同侧股动脉)。以Sedinger技术穿刺股动脉成功后,引入Cobra导管及导丝,使之配合对髂总动脉。用高压注射器进行造影,血管减影造影(DSA)下显示血管情况。置换翻山鞘,用导丝配合导管成功开通病变段血管后,沿导丝送入合适大小的普通球囊逐段反复扩张狭窄或闭塞段血管。造影显示管腔狭窄消失,造影剂顺利通过。沿导丝送入药涂球囊扩张2~3 min。如果在普通球囊扩张后显示狭窄仍有明显或者存在夹层(不影响血流动力学),可采取支架补救术。如再次造影显示造影剂通过顺畅,术毕拔管,压迫器压迫止血,患者返回病房。
1.3 术后治疗
① 适当加强锻炼,注意控制血糖、血脂、血压,观察下肢皮温变化,注意下肢保暖。②阿司匹林肠溶片100 mg口服, 1次/d, 西洛他唑100 mg口服,2次/d。用药期间注意全身各处出血风险,及时调整药物剂量。有创操作前根据具体情况决定是否停药。③定期复查血常规、凝血、D-二聚体。④门诊定期复查下肢动脉CTA, 并咨询调整用药方案。⑤病情变化随诊。
1.4 随访结果
对38例患者于术后6个月、1年进行随访,门诊复查下肢动脉彩色多普勒超声、踝肱指数(ABI)、血管CTA。收集患者术后临床症状的变化、术后行走距离的变化(患者口述),根据门诊大血管CTA、下肢动脉超声以及衍生收缩期峰值速度比 < 2.4判断病变血管是否通畅[9], 从而判断患者是否需要手术治疗。随访终点为发生与手术相关或其他原因导致的死亡、截肢、靶病变血管血栓形成等。
1.5 统计学分析
采用SPSS 22.0统计学软件进行分析。计量资料采用均数±标准差表示,采用独立样本t检验。计数资料以(%)表示, Rutherford分级采用箱式图比较。P < 0.05为差异有统计学意义。
2. 结果
本研究38例患者患肢血管均再通成功,术后随访期间均未发生与手术相关或其他原因导致的死亡、截肢、靶病变血栓形成等并发症,无需要手术再干预患者,随访率100.00%。术后6个月、1年的Ⅰ期通畅率为84.21%、73.68%。所有患者术后不同时点的ABI、行走距离、Rutherford分级均较术前显著改善(P < 0.05), 见表 1、图 1。
表 1 药物涂层球囊手术前后ABI、行走距离及Rutherford分级比较(x±s)指标 时点 水平 95% CI 踝肱指数 术前 0.44±0.12 0.39~0.47 术后第1天 0.86±0.15* 0.80~0.90 术后6个月 0.78±0.16* 0.74~0.84 术后1年 0.76±0.14* 0.71~0.80 行走距离/m 术前 108.55±11.68 71.85~145.26 术后6个月 789.47±104.10* 456.15~1 122.80 术后1年 668.68±68.57* 383.19~954.18 Rutherford分级 术前 4(4,5) — 术后第1天 3(2,3)* — 术后6个月 3(2,3)* — 术后1年 3(2,3)* — 患者术后第1天未能下地行走,未统计行走距离; 患者Rutherford分级以中位数表示。与术前比较, *P < 0.05。 3. 讨论
跨大西洋外周动脉疾病管理学会共识指南[10-12]中,血管腔内治疗被认定为一线治疗方案,较为常见的腔内治疗方案包括经皮血管成形术(PTA)、球囊扩张术、支架置入术和DCB等。在腔内技术日益成熟的今天,越来越多的人倾向于微创治疗,如支架的大量使用,特别是在股腘动脉病变的治疗中[13]。但因为支架置入术在胯关节病变治疗中常有断裂、血管损伤、阻碍侧支循环和引起局部炎症反应等事件发生,导致其应用受阻[14-16]。药物涂层球囊可以较好地解决这一问题。
Scheinert等[17]研究表明,与普通球囊成形术比较, DCB术后6、12、24个月通畅率均明显更高。本研究术后6个月、1年的通畅率为84.21%、73.68%。Bausback等[18]、Steiner等[19]研究显示,药涂术后6个月、1年的通畅率为87.00%、86.40%。与传统的手术方式相比,药涂球囊术具有安全、有效、药效持久、临床收益高等优点。药物紫杉醇可以长久性地抑制血管内膜增生,减少再狭窄的发生,同时也弥补了支架植入术的不足之处。对于多节段复杂性病变、支架内再狭窄病变等,DCB依然优势明显[20]。本研究为回顾性小样本研究,具有一定的局限性,包括非随机对照设计、单一的治疗方案、样本量较小且来自同一家医疗单位,需要进一步的深入研究。
综上所述,药涂球囊治疗下肢动脉狭窄闭塞病变可以获得较好的1年期随访结果,安全性方面与普通球囊类似。
-
[1] Marti-Carvajal A J, Gluud C, Nicola S, et al. Growth factors for treating diabetic foot ulcers[J]. Cochrane Database Syst Rev, 2015: 18013-18021.
[2] Du Y Z, Yu M, Ge J, et al. Development of a multifunctional platform based on strong, intrinsically photoluminescent and antimicrobial silica-poly(citrates)-based hybrid biodegradable elastomers for bone regeneration[J]. Adv Funct Mater, 2015, 25(31): 5016-5029. doi: 10.1002/adfm.201501712
[3] Rani S, Ryan A E, Griffin M D, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications[J]. Mol Ther, 2015, 23(5): 812-823. doi: 10.1038/mt.2015.44
[4] Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy[J]. Annu Rev Physiol, 2015, 77: 13-27. doi: 10.1146/annurev-physiol-021014-071641
[5] Zhang J Y, Guan J J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis[J]. J Transl Med, 2015, 13: 49-53. doi: 10.1186/s12967-015-0417-0
[6] Zhang B, Wang M, Gong A H, et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing[J]. Stem Cells, 2015, 33(7): 2158-2168. doi: 10.1002/stem.1771
[7] Pan B T, Johnstone R M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-978. doi: 10.1016/0092-8674(83)90040-5
[8] Borges F T, Melo S A, Ozdemir B C, et al. TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis[J]. J Am Soc Nephrol, 2013, 24(3): 385-392. doi: 10.1681/ASN.2012101031
[9] Mathiyalagan P, Liang Y X, Kim D, et al. Angiogenic mechanisms of human CD34+ stem cell exosomes in the repair of ischemic hindlimb[J]. Circ Res, 2017, 120(9): 1466-1476. doi: 10.1161/CIRCRESAHA.116.310557
[10] Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6): 1226-1232. doi: 10.1016/j.cell.2016.01.043
[11] Skokos D, Botros H G, Demeure C, et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo[J]. J Immunol, 2003, 170(6): 3037-3045. doi: 10.4049/jimmunol.170.6.3037
[12] Flaherty S E 3rd, Grijalva A, Xu X Y, et al. A lipase-independent pathway of lipid release and immune modulation by adipocytes[J]. Science, 2019, 363(6430): 989-993. doi: 10.1126/science.aaw2586
[13] Andre F, Schartz N E, Movassagh M, et al. Malignant effusions and immunogenic tumour-derived exosomes[J]. Lancet, 2002, 360(9329): 295-305. doi: 10.1016/S0140-6736(02)09552-1
[14] Xiao Y W, Zheng L, Zou X F, et al. Extracellular vesicles in type 2 diabetes mellitus: key roles in pathogenesis, complications, and therapy[J]. J Extracell Vesicles, 2019, 8(1): 1625677. doi: 10.1080/20013078.2019.1625677
[15] Corrado C, Raimondo S, Chiesi A, et al. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications[J]. Int J Mol Sci, 2013, 14(3): 5338-5366. doi: 10.3390/ijms14035338
[16] Zhang X, Yuan X, Shi H, et al. Exosomes in cancer: small particle, big player[J]. J Hematol Oncol, 2015, 8: 83-86. doi: 10.1186/s13045-015-0181-x
[17] Kim M S, Haney M J, Zhao Y L, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells[J]. Nanomed-Nanotechnol Biol Med, 2016, 12(3): 655-664. doi: 10.1016/j.nano.2015.10.012
[18] Théry C, Witwer K W, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750. doi: 10.1080/20013078.2018.1535750
[19] Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes[J]. Proc Natl Acad Sci USA, 2016, 113(8): E968-E977. doi: 10.1073/pnas.1521230113
[20] Jeppesen D K, Fenix A M, Franklin J L, et al. Reassessment of exosome composition[J]. Cell, 2019, 177(2): 428-445. doi: 10.1016/j.cell.2019.02.029
[21] Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J]. J Extracell Vesicles, 2016, 5: 32945. doi: 10.3402/jev.v5.32945
[22] Mateescu B, Kowal E J, van Balkom B W, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper[J]. J Extracell Vesicles, 2017, 6(1): 1286095. doi: 10.1080/20013078.2017.1286095
[23] Karimi N, Cvjetkovic A, Jang S C, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins[J]. Cell Mol Life Sci, 2018, 75(15): 2873-2886. doi: 10.1007/s00018-018-2773-4
[24] Carrasco-Ramírez P, Greening D W, Andres G, et al. Podoplanin is a component of extracellular vesicles that reprograms cell-derived exosomal proteins and modulates lymphatic vessel formation[J]. Oncotarget, 2016, 7(13): 16070-16089. doi: 10.18632/oncotarget.7445
[25] Hong C S, Funk S, Muller L, et al. Isolation of biologically active and morphologically intact exosomes from plasma of patients with cancer[J]. J Extracell Vesicles, 2016, 5: 29289. doi: 10.3402/jev.v5.29289
[26] Shen W, Guo K Z, Adkins G B, et al. A single extracellular vesicle (EV) flow cytometry approach to reveal EV heterogeneity[J]. Angew Chem Int Ed Engl, 2018, 57(48): 15675-15680. doi: 10.1002/anie.201806901
[27] Gurtner G C, Sabine W, Yann B, et al. Wound repair and regeneration[J]. Wound Repair & Regeneration, 2010, 11(6): 5A-8A.
[28] Pop M A, Almquist B D. Biomaterials: A potential pathway to healing chronic wounds?[J]. Exp Dermatol, 2017, 26(9): 760-763. doi: 10.1111/exd.13290
[29] Dittmer J, Leyh B. Paracrine effects of stem cells in wound healing and cancer progression (Review)[J]. Int J Oncol, 2014, 44(6): 1789-1798. doi: 10.3892/ijo.2014.2385
[30] Walker A, Nissen E, Geiger A. Migratory, metabolic and functional alterations of fibrocytes in type 2 diabetes[J]. IUBMB Life, 2018, 70(11): 1122-1132. doi: 10.1002/iub.1920
[31] Tao S C, Guo S C, Li M, et al. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model[J]. Stem Cells Transl Med, 2017, 6(3): 736-747. doi: 10.5966/sctm.2016-0275
[32] Guo S C, Tao S C, Yin W J, et al. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model[J]. Theranostics, 2017, 7(1): 81-96. doi: 10.7150/thno.16803
[33] Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro[J]. Stem Cells Dev, 2015, 24(14): 1635-1647. doi: 10.1089/scd.2014.0316
[34] Geiger A, Walker A, Nissen E. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice[J]. Biochem Biophys Res Commun, 2015, 467(2): 303-309. doi: 10.1016/j.bbrc.2015.09.166
[35] Zhao F J, Lei B, Li X, et al. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes[J]. Biomaterials, 2018, 178: 36-47. doi: 10.1016/j.biomaterials.2018.06.004
[36] Dalirfardouei R, Jamialahmadi K, Jafarian A H, et al. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model[J]. J Tissue Eng Regen Med, 2019, 13(4): 555-568. doi: 10.1002/term.2799
[37] Chen C Y, Rao S S, Ren L, et al. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis[J]. Theranostics, 2018, 8(6): 1607-1623. doi: 10.7150/thno.22958
[38] Li X C, Chen C Y, Wei L M, et al. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function[J]. Cytotherapy, 2016, 18(2): 253-262. doi: 10.1016/j.jcyt.2015.11.009
[39] Li X C, Jiang C Y, Zhao J G. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function[J]. J Diabetes Complicat, 2016, 30(6): 986-992. doi: 10.1016/j.jdiacomp.2016.05.009
[40] Zhang J Y, Chen C Y, Hu B, et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling[J]. Int J Biol Sci, 2016, 12(12): 1472-1487. doi: 10.7150/ijbs.15514
[41] Li X, Xie X Y, Lian W S, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model[J]. Exp Mol Med, 2018, 50(4): 29-34.
[42] Li X, Liu L Y, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation[J]. EBioMedicine, 2016, 8: 72-82. doi: 10.1016/j.ebiom.2016.04.030
[43] Ti D D, Hao H J, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308-314. doi: 10.1186/s12967-015-0642-6
[44] Jia L, Chopp M, Wang L, et al. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy[J]. The FASEB Journal, 2018, 32(12): 6911-6922. doi: 10.1096/fj.201800597R
[45] Zhang Z G, Chopp M. Exosomes in stroke pathogenesis and therapy[J]. J Clin Investig, 2016, 126(4): 1190-1197. doi: 10.1172/JCI81133
[46] Wang C G, Wang M, Xu T Z, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J]. Theranostics, 2019, 9(1): 65-76. doi: 10.7150/thno.29766
[47] Xu N, Wang L, Guan J, et al. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model[J]. International Journal of Biological Macromolecules, 2018, 117: 102-107. doi: 10.1016/j.ijbiomac.2018.05.066
[48] Shi Q, Qian Z, Liu D, et al. GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge Accelerates Wound Healing in a Diabetic Rat Skin Defect Model[J]. Frontiers in Physiology, 2017, 8: 1341-1349. doi: 10.3389/fpls.2017.01341
-
期刊类型引用(5)
1. 王璐鹏,张雅,张欣,耿思源. 人参黄芩配伍通过调控S100B信号通路对下肢动脉硬化闭塞症大鼠内皮细胞功能、氧化应激的影响. 中国老年学杂志. 2024(03): 612-617 . 百度学术
2. 张红松,赵亚恒,张磊,张峰,贺新奇,彭军路,何兆鹏,郑丽华,张立科,杨艳. 药物涂层球囊与经皮腔内球囊扩张对2型糖尿病膝下动脉病变患者一期通畅率、动脉内氧化应激的影响. 中国现代普通外科进展. 2021(04): 267-272 . 百度学术
3. 赵文鲁. 紫杉醇药物涂层球囊对下肢动脉硬化闭塞症患者临床疗效的观察. 齐齐哈尔医学院学报. 2021(21): 1864-1867 . 百度学术
4. 赵爱民,翟文静. 活血通络汤治疗下肢闭塞性动脉硬化的临床疗效. 血管与腔内血管外科杂志. 2020(05): 419-423 . 百度学术
5. 叶璐娟,刘珍英,董井秀,刘燕. 延续性护理服务在下肢闭塞性动脉硬化症介入治疗患者中的应用效果. 中国当代医药. 2020(30): 219-222 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 141
- HTML全文浏览量: 58
- PDF下载量: 9
- 被引次数: 7