红细胞微粒与动脉粥样硬化相关性研究进展

郑国学, 谭强, 郑江华, 陈开

郑国学, 谭强, 郑江华, 陈开. 红细胞微粒与动脉粥样硬化相关性研究进展[J]. 实用临床医药杂志, 2021, 25(6): 113-117, 132. DOI: 10.7619/jcmp.20201633
引用本文: 郑国学, 谭强, 郑江华, 陈开. 红细胞微粒与动脉粥样硬化相关性研究进展[J]. 实用临床医药杂志, 2021, 25(6): 113-117, 132. DOI: 10.7619/jcmp.20201633
ZHENG Guoxue, TAN Qiang, ZHENG Jianghua, CHEN Kai. Research progress on correlation between erythrocyte-derived microparticles and atherosclerosis[J]. Journal of Clinical Medicine in Practice, 2021, 25(6): 113-117, 132. DOI: 10.7619/jcmp.20201633
Citation: ZHENG Guoxue, TAN Qiang, ZHENG Jianghua, CHEN Kai. Research progress on correlation between erythrocyte-derived microparticles and atherosclerosis[J]. Journal of Clinical Medicine in Practice, 2021, 25(6): 113-117, 132. DOI: 10.7619/jcmp.20201633

红细胞微粒与动脉粥样硬化相关性研究进展

基金项目: 川北医学院附属医院科研基金资助项目(2020ZD012)
详细信息
    通讯作者:

    陈开, E-mail: 1099383901@qq.com

  • 中图分类号: R543.5;R331.1

Research progress on correlation between erythrocyte-derived microparticles and atherosclerosis

  • 摘要: 动脉粥样硬化是冠心病、外周动脉硬化闭塞症等多种心血管疾病的共同病理基础,其发生、发展的分子机制十分复杂,斑块内微血栓形成、局部炎症反应、免疫反应等多种因素共同参与并相互作用。红细胞微粒特指由红细胞产生的含膜小泡,具有促进凝血、参与炎症反应、调节血管内皮功能等多种生物活性。循环的红细胞微粒可能包含潜在的有价值的生物信息,可用于开发心血管疾病的特异性生物标志物,并可以作为治疗使用的载体。因此,认识红细胞微粒在动脉粥样硬化中的作用至关重要,这有助于从分子水平了解动脉粥样硬化的机制,或可为心血管疾病提供新的诊断和治疗靶点。
    Abstract: Atherosclerosis is the common pathological basis of coronary heart disease, peripheral arteriosclerosis obliterans and other cardiovascular diseases, its molecular mechanism of occurrence and development is very complex, and many factors such as microthrombosis in plaque, local inflammation and immune response participate in this process and interact with each other. Erythrocyte-derived microparticles are membrane containing vesicles produced by red blood cells, which have many biological activities, such as promoting blood coagulation, participating in inflammatory reaction, regulating vascular endothelial function and so on. Circulating erythrocyte-derived microparticles may contain potentially valuable biological information, which can be used to develop specific biomarkers for cardiovascular disease, and can be used as a carrier for treatment. Therefore, it is very important to understand the role of erythrocyte-derived microparticles in atherosclerosis, which is helpful to understand the mechanism of atherosclerosis at the molecular level, or to provide new diagnostic and therapeutic targets for cardiovascular diseases.
  • [1] 陈伟伟, 隋辉, 马丽媛. 中国心脑血管病流行现况及防治进展[J]. 心脑血管病防治, 2016, 16(2): 79-83. doi: 10.3969/j.issn.1009-816X.2016.02.001
    [2]

    WOLF D, ZIRLIK A, LEY K. Beyond vascular inflammation: recent advances in understanding atherosclerosis[J]. Cell Mol Life Sci, 2015, 72(20): 3853-3869. doi: 10.1007/s00018-015-1971-6

    [3]

    ANTONOVA O A, SHUSTOVA O N, GOLUBEVA N V, et al. Coagulation properties of erythrocyte derived membrane microparticles[J]. Biomeditsinskaia Khimiia, 2019, 65(3): 214-221. doi: 10.18097/PBMC20196503214

    [4]

    CHANG A L, KIM Y, SEITZ A P, et al. Erythrocyte-derived microparticles activate pulmonary endothelial cells in a murine model of transfusion[J]. Shock, 2017, 47(5): 632-637. doi: 10.1097/SHK.0000000000000780

    [5]

    SAID A S, DOCTOR A. Influence of red blood cell-derived microparticles upon vasoregulation[J]. Blood Transfus, 2017, 15(6): 522-534. http://pubmedcentralcanada.ca/pmcc/articles/PMC5649961/

    [6]

    LUTZ H U. Naturally occurring autoantibodies in mediating clearance of senescent red blood cells[J]. Adv Exp Med Biol, 2012, 750: 76-90. http://europepmc.org/abstract/med/22903667

    [7]

    LARSON M C, HILLERY C A, HOGG N. Circulating membrane-derived microvesicles in redox biology[J]. Free Radic Biol Med, 2014, 73: 214-228. doi: 10.1016/j.freeradbiomed.2014.04.017

    [8]

    DASGUPTA S K, LE A, CHAVAKIS T, et al. Developmental endothelial locus-1(Del-1)mediates clearance of platelet microparticles by the endothelium[J]. Circulation, 2012, 125(13): 1664-1672. doi: 10.1161/CIRCULATIONAHA.111.068833

    [9]

    ARRAUD N, LINARES R, TAN S, et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration[J]. J Thromb Haemost, 2014, 12(5): 614-627. doi: 10.1111/jth.12554

    [10]

    ZECHER D, CUMPELIK A, SCHIFFERLI J A. Erythrocytederived microvesicles amplify systemic inflammation by thrombin-dependent activation of complement[J]. Arterioscler Thromb Vasc Biol, 2014, 34(2): 313-320. doi: 10.1161/ATVBAHA.113.302378

    [11]

    POTOR L, BÁNYAI E, BECS G, et al. Atherogenesis may involve the prooxidant and proinflammatory effects of ferryl hemoglobin[J]. Oxid Med Cell Longev, 2013, 2013: 676425. http://europepmc.org/articles/PMC3671302

    [12]

    BOSMAN G J, LASONDER E, GROENEN-DÖPP Y A, et al. The proteome of erythrocyte-derived microparticles from plasma: new clues for erythrocyte aging and vesiculation[J]. J Proteomics, 2012, 76(Spec No. ): 203-210. http://www.sciencedirect.com/science/article/pii/S1874391912003442

    [13]

    FEDOROV A, KONDRATOV K, KISHENKO V, et al. Application of high-sensitivity flow cytometry in combination with low-voltage scanning electron microscopy for characterization of nanosized objects during platelet concentrate storage[J]. Platelets, 2020, 31(2): 226-235. doi: 10.1080/09537104.2019.1599337

    [14]

    GROSS J, SAYLE S, KAROW A R, et al. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: Influence of experimental and data evaluation parameters[J]. Eur J Pharm Biopharm, 2016, 104: 30-41. doi: 10.1016/j.ejpb.2016.04.013

    [15]

    VAN DER POL E, COUMANS F A, GROOTEMAAT A E, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing[J]. J Thromb Haemost, 2014, 12(7): 1182-1192. doi: 10.1111/jth.12602

    [16]

    GKALIAGKOUSI E, NIKOLAIDOU B, GAVRIILAKI E, et al. Increased erythrocyte-and platelet-derived microvesicles in newly diagnosed type 2 diabetes mellitus[J]. Diab Vasc Dis Res, 2019, 16(5): 458-465. doi: 10.1177/1479164119844691

    [17]

    SUADES R, PADRÓT, VILAHUR G, et al. Growing thrombi release increased levels of CD235a(+)microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients[J]. J Thromb Haemost, 2015, 13(10): 1776-1786. doi: 10.1111/jth.13065

    [18] 程庆荣, 李结华. 红细胞微粒水平与AMI冠状动脉血管病变程度的相关性[J]. 中南医学科学杂志, 2020, 48(4): 364-367. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYY202004007.htm
    [19] 朱跃跃, 卞茂红, 谢如锋. 红细胞微粒的促凝血性质与小鼠急性肺损伤的关系[J]. 安徽医科大学学报, 2020, 55(1): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YIKE202001019.htm
    [20]

    FISCHER D, BÜSSOW J, MEYBOHM P, et al. Microparticles from stored red blood cells enhance procoagulant and proinflammatory activity[J]. Transfusion, 2017, 57(11): 2701-2711. doi: 10.1111/trf.14268

    [21]

    VAN DER MEIJDEN P E, VAN SCHILFGAARDE M, VANOERLE R, et al. Platelet-and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa[J]. J Thromb Haemost, 2012, 10(7): 1355-1362. doi: 10.1111/j.1538-7836.2012.04758.x

    [22]

    MOOBERRY M J, BRADFORD R, HOBL E L, et al. Procoagulant microparticles promote coagulation in a factor XI-dependent manner in human endotoxemia[J]. J Thromb Haemost, 2016, 14(5): 1031-1042. doi: 10.1111/jth.13285

    [23]

    LOYER X, VION A C, TEDGUI A, et al. Microvesicles as cell-cell messengers in cardiovascular diseases[J]. Circ Res, 2014, 114(2): 345-353. doi: 10.1161/CIRCRESAHA.113.300858

    [24]

    KOSHIAR R L, SOMAJO S, NORSTRÖM E, et al. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation[J]. PLo S One, 2014, 9(8): e104200. doi: 10.1371/journal.pone.0104200

    [25]

    SMILJICS, NESTOROVIC V, SAVIC S. Modulatory role of nitric oxide in cardiac performance[J]. Med Pregl, 2014, 67(9/10): 345-352. http://www.ncbi.nlm.nih.gov/pubmed/25546983

    [26]

    CANAULT M, LEROYER A S, PEIRETTI F, et al. Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/AD-AM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1[J]. Am J Pathol, 2007, 171(5): 1713-1723. doi: 10.2353/ajpath.2007.070021

    [27]

    BELIZAIRE R M, PRAKASH P S, RICHTER J R, et al. Microparticles from stored red blood cells activate neutrophils and cause lung injury after hemorrhage and resuscitation[J]. J Am Coll Surg, 2012, 214(4): 648-657. doi: 10.1016/j.jamcollsurg.2011.12.032

    [28]

    SADALLAH S, EKEN C, SCHIFFERLI J A. Erythrocyte-derived ectosomes have immunosuppressive properties[J]. JLeukoc Biol, 2008, 84(5): 1316-1325. doi: 10.1189/jlb.0108013

    [29]

    CAMUS S M, DE MORAES J A, BONNIN P, et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease[J]. Blood, 2015, 125(24): 3805-3814. doi: 10.1182/blood-2014-07-589283

    [30]

    KIM Y, ABPLANALP W A, JUNG A D, et al. Endocytosis of red blood cell microparticles by pulmonary endothelial cells is mediated by Rab5[J]. Shock, 2018, 49(3): 288-294. doi: 10.1097/SHK.0000000000000995

    [31] 刘洪智, 赵英帅, 徐予, 等. 血管紧张素-(1-7)特异性受体激动剂对载脂蛋白E基因敲除小鼠动脉粥样硬化形成的影响[J]. 中华老年医学杂志, 2019, 38(7): 795-799.
    [32]

    LIU C, ZHAO W X, CHRIST G J, et al. Nitric oxide scavenging by red cell microparticles[J]. Free Radic Biol Med, 2013, 65: 1164-1173. doi: 10.1016/j.freeradbiomed.2013.09.002

    [33] 欧阳思雨, 李靓, 刘尚铭, 等. 自然杀伤细胞和自然杀伤T细胞在动脉粥样硬化形成中的作用[J]. 生理科学进展, 2019, 50(3): 189-194. https://www.cnki.com.cn/Article/CJFDTOTAL-SLKZ201903006.htm
    [34]

    DANESH A, INGLIS H C, JACKMAN R P, et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro[J]. Blood, 2014, 123(5): 687-696. doi: 10.1182/blood-2013-10-530469

    [35]

    MARTÍNEZ-RODRÍGUEZ J E, MUNNÉ-COLLADO J, RASAL R, et al. Expansion of the NKG2C+ natural killer-cell subset is associated with high-risk carotid atherosclerotic plaques in seropositive patients for human Cytomegalovirus[J]. Arterioscler Thromb Vasc Biol, 2013, 33(11): 2653-2659. doi: 10.1161/ATVBAHA.113.302163

    [36]

    YE W J, CHEW M, HOU J, et al. Microvesicles from malaria-infected red blood cells activate natural killer cells via MDA5pathway[J]. PLo S Pathog, 2018, 14(10): e1007298. doi: 10.1371/journal.ppat.1007298

  • 期刊类型引用(3)

    1. 依丽努尔·米马尼. 经股静脉超声引导下房间隔缺损封堵术体会. 世界最新医学信息文摘. 2019(41): 107-108 . 百度学术
    2. 张艳,张爱华. 有关小儿先天性心脏病房间隔缺损修补术术后护理要点分析. 中国继续医学教育. 2018(08): 175-176 . 百度学术
    3. 刘洁,杨巧玲. 充气式保温毯应用于中低温体外循环心脏手术后患者的效果及对并发症的影响分析. 首都食品与医药. 2018(13): 12 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  459
  • HTML全文浏览量:  258
  • PDF下载量:  32
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-12-08
  • 网络出版日期:  2021-04-08
  • 发布日期:  2021-03-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭