红细胞微粒与动脉粥样硬化相关性研究进展

郑国学, 谭强, 郑江华, 陈开

郑国学, 谭强, 郑江华, 陈开. 红细胞微粒与动脉粥样硬化相关性研究进展[J]. 实用临床医药杂志, 2021, 25(6): 113-117, 132. DOI: 10.7619/jcmp.20201633
引用本文: 郑国学, 谭强, 郑江华, 陈开. 红细胞微粒与动脉粥样硬化相关性研究进展[J]. 实用临床医药杂志, 2021, 25(6): 113-117, 132. DOI: 10.7619/jcmp.20201633
ZHENG Guoxue, TAN Qiang, ZHENG Jianghua, CHEN Kai. Research progress on correlation between erythrocyte-derived microparticles and atherosclerosis[J]. Journal of Clinical Medicine in Practice, 2021, 25(6): 113-117, 132. DOI: 10.7619/jcmp.20201633
Citation: ZHENG Guoxue, TAN Qiang, ZHENG Jianghua, CHEN Kai. Research progress on correlation between erythrocyte-derived microparticles and atherosclerosis[J]. Journal of Clinical Medicine in Practice, 2021, 25(6): 113-117, 132. DOI: 10.7619/jcmp.20201633

红细胞微粒与动脉粥样硬化相关性研究进展

基金项目: 川北医学院附属医院科研基金资助项目(2020ZD012)
详细信息
    通讯作者:

    陈开, E-mail: 1099383901@qq.com

  • 中图分类号: R543.5;R331.1

Research progress on correlation between erythrocyte-derived microparticles and atherosclerosis

  • 摘要: 动脉粥样硬化是冠心病、外周动脉硬化闭塞症等多种心血管疾病的共同病理基础,其发生、发展的分子机制十分复杂,斑块内微血栓形成、局部炎症反应、免疫反应等多种因素共同参与并相互作用。红细胞微粒特指由红细胞产生的含膜小泡,具有促进凝血、参与炎症反应、调节血管内皮功能等多种生物活性。循环的红细胞微粒可能包含潜在的有价值的生物信息,可用于开发心血管疾病的特异性生物标志物,并可以作为治疗使用的载体。因此,认识红细胞微粒在动脉粥样硬化中的作用至关重要,这有助于从分子水平了解动脉粥样硬化的机制,或可为心血管疾病提供新的诊断和治疗靶点。
    Abstract: Atherosclerosis is the common pathological basis of coronary heart disease, peripheral arteriosclerosis obliterans and other cardiovascular diseases, its molecular mechanism of occurrence and development is very complex, and many factors such as microthrombosis in plaque, local inflammation and immune response participate in this process and interact with each other. Erythrocyte-derived microparticles are membrane containing vesicles produced by red blood cells, which have many biological activities, such as promoting blood coagulation, participating in inflammatory reaction, regulating vascular endothelial function and so on. Circulating erythrocyte-derived microparticles may contain potentially valuable biological information, which can be used to develop specific biomarkers for cardiovascular disease, and can be used as a carrier for treatment. Therefore, it is very important to understand the role of erythrocyte-derived microparticles in atherosclerosis, which is helpful to understand the mechanism of atherosclerosis at the molecular level, or to provide new diagnostic and therapeutic targets for cardiovascular diseases.
  • [1] 陈伟伟, 隋辉, 马丽媛. 中国心脑血管病流行现况及防治进展[J]. 心脑血管病防治, 2016, 16(2): 79-83. doi: 10.3969/j.issn.1009-816X.2016.02.001
    [2]

    WOLF D, ZIRLIK A, LEY K. Beyond vascular inflammation: recent advances in understanding atherosclerosis[J]. Cell Mol Life Sci, 2015, 72(20): 3853-3869. doi: 10.1007/s00018-015-1971-6

    [3]

    ANTONOVA O A, SHUSTOVA O N, GOLUBEVA N V, et al. Coagulation properties of erythrocyte derived membrane microparticles[J]. Biomeditsinskaia Khimiia, 2019, 65(3): 214-221. doi: 10.18097/PBMC20196503214

    [4]

    CHANG A L, KIM Y, SEITZ A P, et al. Erythrocyte-derived microparticles activate pulmonary endothelial cells in a murine model of transfusion[J]. Shock, 2017, 47(5): 632-637. doi: 10.1097/SHK.0000000000000780

    [5]

    SAID A S, DOCTOR A. Influence of red blood cell-derived microparticles upon vasoregulation[J]. Blood Transfus, 2017, 15(6): 522-534. http://pubmedcentralcanada.ca/pmcc/articles/PMC5649961/

    [6]

    LUTZ H U. Naturally occurring autoantibodies in mediating clearance of senescent red blood cells[J]. Adv Exp Med Biol, 2012, 750: 76-90. http://europepmc.org/abstract/med/22903667

    [7]

    LARSON M C, HILLERY C A, HOGG N. Circulating membrane-derived microvesicles in redox biology[J]. Free Radic Biol Med, 2014, 73: 214-228. doi: 10.1016/j.freeradbiomed.2014.04.017

    [8]

    DASGUPTA S K, LE A, CHAVAKIS T, et al. Developmental endothelial locus-1(Del-1)mediates clearance of platelet microparticles by the endothelium[J]. Circulation, 2012, 125(13): 1664-1672. doi: 10.1161/CIRCULATIONAHA.111.068833

    [9]

    ARRAUD N, LINARES R, TAN S, et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration[J]. J Thromb Haemost, 2014, 12(5): 614-627. doi: 10.1111/jth.12554

    [10]

    ZECHER D, CUMPELIK A, SCHIFFERLI J A. Erythrocytederived microvesicles amplify systemic inflammation by thrombin-dependent activation of complement[J]. Arterioscler Thromb Vasc Biol, 2014, 34(2): 313-320. doi: 10.1161/ATVBAHA.113.302378

    [11]

    POTOR L, BÁNYAI E, BECS G, et al. Atherogenesis may involve the prooxidant and proinflammatory effects of ferryl hemoglobin[J]. Oxid Med Cell Longev, 2013, 2013: 676425. http://europepmc.org/articles/PMC3671302

    [12]

    BOSMAN G J, LASONDER E, GROENEN-DÖPP Y A, et al. The proteome of erythrocyte-derived microparticles from plasma: new clues for erythrocyte aging and vesiculation[J]. J Proteomics, 2012, 76(Spec No. ): 203-210. http://www.sciencedirect.com/science/article/pii/S1874391912003442

    [13]

    FEDOROV A, KONDRATOV K, KISHENKO V, et al. Application of high-sensitivity flow cytometry in combination with low-voltage scanning electron microscopy for characterization of nanosized objects during platelet concentrate storage[J]. Platelets, 2020, 31(2): 226-235. doi: 10.1080/09537104.2019.1599337

    [14]

    GROSS J, SAYLE S, KAROW A R, et al. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: Influence of experimental and data evaluation parameters[J]. Eur J Pharm Biopharm, 2016, 104: 30-41. doi: 10.1016/j.ejpb.2016.04.013

    [15]

    VAN DER POL E, COUMANS F A, GROOTEMAAT A E, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing[J]. J Thromb Haemost, 2014, 12(7): 1182-1192. doi: 10.1111/jth.12602

    [16]

    GKALIAGKOUSI E, NIKOLAIDOU B, GAVRIILAKI E, et al. Increased erythrocyte-and platelet-derived microvesicles in newly diagnosed type 2 diabetes mellitus[J]. Diab Vasc Dis Res, 2019, 16(5): 458-465. doi: 10.1177/1479164119844691

    [17]

    SUADES R, PADRÓT, VILAHUR G, et al. Growing thrombi release increased levels of CD235a(+)microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients[J]. J Thromb Haemost, 2015, 13(10): 1776-1786. doi: 10.1111/jth.13065

    [18] 程庆荣, 李结华. 红细胞微粒水平与AMI冠状动脉血管病变程度的相关性[J]. 中南医学科学杂志, 2020, 48(4): 364-367. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYY202004007.htm
    [19] 朱跃跃, 卞茂红, 谢如锋. 红细胞微粒的促凝血性质与小鼠急性肺损伤的关系[J]. 安徽医科大学学报, 2020, 55(1): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YIKE202001019.htm
    [20]

    FISCHER D, BÜSSOW J, MEYBOHM P, et al. Microparticles from stored red blood cells enhance procoagulant and proinflammatory activity[J]. Transfusion, 2017, 57(11): 2701-2711. doi: 10.1111/trf.14268

    [21]

    VAN DER MEIJDEN P E, VAN SCHILFGAARDE M, VANOERLE R, et al. Platelet-and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa[J]. J Thromb Haemost, 2012, 10(7): 1355-1362. doi: 10.1111/j.1538-7836.2012.04758.x

    [22]

    MOOBERRY M J, BRADFORD R, HOBL E L, et al. Procoagulant microparticles promote coagulation in a factor XI-dependent manner in human endotoxemia[J]. J Thromb Haemost, 2016, 14(5): 1031-1042. doi: 10.1111/jth.13285

    [23]

    LOYER X, VION A C, TEDGUI A, et al. Microvesicles as cell-cell messengers in cardiovascular diseases[J]. Circ Res, 2014, 114(2): 345-353. doi: 10.1161/CIRCRESAHA.113.300858

    [24]

    KOSHIAR R L, SOMAJO S, NORSTRÖM E, et al. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation[J]. PLo S One, 2014, 9(8): e104200. doi: 10.1371/journal.pone.0104200

    [25]

    SMILJICS, NESTOROVIC V, SAVIC S. Modulatory role of nitric oxide in cardiac performance[J]. Med Pregl, 2014, 67(9/10): 345-352. http://www.ncbi.nlm.nih.gov/pubmed/25546983

    [26]

    CANAULT M, LEROYER A S, PEIRETTI F, et al. Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/AD-AM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1[J]. Am J Pathol, 2007, 171(5): 1713-1723. doi: 10.2353/ajpath.2007.070021

    [27]

    BELIZAIRE R M, PRAKASH P S, RICHTER J R, et al. Microparticles from stored red blood cells activate neutrophils and cause lung injury after hemorrhage and resuscitation[J]. J Am Coll Surg, 2012, 214(4): 648-657. doi: 10.1016/j.jamcollsurg.2011.12.032

    [28]

    SADALLAH S, EKEN C, SCHIFFERLI J A. Erythrocyte-derived ectosomes have immunosuppressive properties[J]. JLeukoc Biol, 2008, 84(5): 1316-1325. doi: 10.1189/jlb.0108013

    [29]

    CAMUS S M, DE MORAES J A, BONNIN P, et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease[J]. Blood, 2015, 125(24): 3805-3814. doi: 10.1182/blood-2014-07-589283

    [30]

    KIM Y, ABPLANALP W A, JUNG A D, et al. Endocytosis of red blood cell microparticles by pulmonary endothelial cells is mediated by Rab5[J]. Shock, 2018, 49(3): 288-294. doi: 10.1097/SHK.0000000000000995

    [31] 刘洪智, 赵英帅, 徐予, 等. 血管紧张素-(1-7)特异性受体激动剂对载脂蛋白E基因敲除小鼠动脉粥样硬化形成的影响[J]. 中华老年医学杂志, 2019, 38(7): 795-799.
    [32]

    LIU C, ZHAO W X, CHRIST G J, et al. Nitric oxide scavenging by red cell microparticles[J]. Free Radic Biol Med, 2013, 65: 1164-1173. doi: 10.1016/j.freeradbiomed.2013.09.002

    [33] 欧阳思雨, 李靓, 刘尚铭, 等. 自然杀伤细胞和自然杀伤T细胞在动脉粥样硬化形成中的作用[J]. 生理科学进展, 2019, 50(3): 189-194. https://www.cnki.com.cn/Article/CJFDTOTAL-SLKZ201903006.htm
    [34]

    DANESH A, INGLIS H C, JACKMAN R P, et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro[J]. Blood, 2014, 123(5): 687-696. doi: 10.1182/blood-2013-10-530469

    [35]

    MARTÍNEZ-RODRÍGUEZ J E, MUNNÉ-COLLADO J, RASAL R, et al. Expansion of the NKG2C+ natural killer-cell subset is associated with high-risk carotid atherosclerotic plaques in seropositive patients for human Cytomegalovirus[J]. Arterioscler Thromb Vasc Biol, 2013, 33(11): 2653-2659. doi: 10.1161/ATVBAHA.113.302163

    [36]

    YE W J, CHEW M, HOU J, et al. Microvesicles from malaria-infected red blood cells activate natural killer cells via MDA5pathway[J]. PLo S Pathog, 2018, 14(10): e1007298. doi: 10.1371/journal.ppat.1007298

  • 期刊类型引用(23)

    1. 王海燕. 急诊护理快速通道对急性脑梗死患者救治时间及治疗效果的影响. 名医. 2024(01): 186-188 . 百度学术
    2. 李中霞,刘新伟,牛宁宁,李颖,李润杰. 改良式护理流程情景模拟演练对老年脑梗死患者护理质量的影响. 保健医学研究与实践. 2024(04): 127-132 . 百度学术
    3. 马芳珍,许国军. 基于奥瑞姆自理理论的健康教育在急性脑梗死卧床患者中的应用. 中国基层医药. 2023(01): 133-137 . 百度学术
    4. 赵好娟. 优化急诊护理对急性脑梗死患者急救效率及预后的影响. 西藏医药. 2020(01): 108-109 . 百度学术
    5. 吴花香. 急性脑梗死抢救中的全程优化急诊护理效果观察. 智慧健康. 2020(21): 108-109 . 百度学术
    6. 李启华. 探讨急诊急救治疗急性脑梗死的初步效果. 中国社区医师. 2020(23): 9-10 . 百度学术
    7. 蔡静纯. 全程优化急诊护理在急性脑梗死中的抢救效果观察方案. 岭南急诊医学杂志. 2020(04): 405-407 . 百度学术
    8. 李葳,郭海平. 优化院前急诊护理流程在急性脑梗死患者中的运用研究. 中西医结合心血管病电子杂志. 2020(32): 153 . 百度学术
    9. 朱芳霞,崔晓洁,李娜. 精细化管理理念优化护理流程在急性脑梗死患者中的应用. 临床医学工程. 2020(11): 1555-1556 . 百度学术
    10. 赵红. 急诊优化通道干预对急性脑梗死患者急救效果的影响. 河南医学研究. 2019(04): 758-759 . 百度学术
    11. 刘芳,施玉林. 改良院前急诊护理流程对急性脑梗死患者院前延迟与预后的影响. 护理实践与研究. 2019(09): 156-157 . 百度学术
    12. 韩红丽. 急诊护理干预对脑梗死患者救治效果及神经功能缺损的影响. 慢性病学杂志. 2019(05): 791-793 . 百度学术
    13. 李娟. 程序化急诊护理对脑梗死患者急救效果的影响. 中外医学研究. 2019(18): 93-95 . 百度学术
    14. 章晨. 急诊护理快速通道对急性脑卒中救治时间及治疗效果的影响. 当代临床医刊. 2019(04): 338+328 . 百度学术
    15. 车鑫霞. 急性脑梗死临床规范化护理管理对预后效果的影响. 中国现代药物应用. 2019(18): 83-84 . 百度学术
    16. 王金朋,林彦婷,王宇,孙云鹏. 优化院前急诊护理流程在急性脑梗死患者中的应用. 齐鲁护理杂志. 2019(24): 89-91 . 百度学术
    17. 沈丹璐. 探讨急诊护理流程的实施对急性脑梗死患者临床结局的影响. 保健文汇. 2019(10): 247-248 . 百度学术
    18. 贺斯嘉. 急诊护理快速通道对急性脑卒中救治效率的影响分析. 黑龙江医药. 2019(06): 1492-1494 . 百度学术
    19. 宗淑华. 分析急性脑梗死实施急诊绿色通道护理流程救治的临床价值. 中外医疗. 2019(32): 133-135 . 百度学术
    20. 樊静,王玉霞. 早期护理干预对急性脑梗死患者神经功能及日常生活能力的影响. 贵州医药. 2019(12): 2001-2002 . 百度学术
    21. 邹洁,胡丹丽. 急诊护理流程优化对急性脑梗死患者急救效果与护理满意度的影响. 护理实践与研究. 2018(08): 40-42 . 百度学术
    22. 刘桂芬. 全程优化急诊护理在急性脑梗死中的抢救效果分析. 系统医学. 2018(10): 161-163 . 百度学术
    23. 马鑫. 优化急诊护理流程对急性脑梗死患者神经功能及认知功能的影响. 家庭医药.就医选药. 2017(12): 32 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  461
  • HTML全文浏览量:  258
  • PDF下载量:  32
  • 被引次数: 24
出版历程
  • 收稿日期:  2020-12-08
  • 网络出版日期:  2021-04-08
  • 发布日期:  2021-03-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭