外泌体微小RNA在慢性肾脏病中的研究进展

陈笑, 聂安琪, 刘静, 陆宇晴, 石嘉琪, 陈晓岚

陈笑, 聂安琪, 刘静, 陆宇晴, 石嘉琪, 陈晓岚. 外泌体微小RNA在慢性肾脏病中的研究进展[J]. 实用临床医药杂志, 2020, 24(24): 128-132. DOI: 10.7619/jcmp.202024039
引用本文: 陈笑, 聂安琪, 刘静, 陆宇晴, 石嘉琪, 陈晓岚. 外泌体微小RNA在慢性肾脏病中的研究进展[J]. 实用临床医药杂志, 2020, 24(24): 128-132. DOI: 10.7619/jcmp.202024039
CHEN Xiao, NIE Anqi, LIU Jing, LU Yuqing, SHI Jiaqi, CHEN Xiaolan. Advances in exosomes microRNA in chronic kidney disease[J]. Journal of Clinical Medicine in Practice, 2020, 24(24): 128-132. DOI: 10.7619/jcmp.202024039
Citation: CHEN Xiao, NIE Anqi, LIU Jing, LU Yuqing, SHI Jiaqi, CHEN Xiaolan. Advances in exosomes microRNA in chronic kidney disease[J]. Journal of Clinical Medicine in Practice, 2020, 24(24): 128-132. DOI: 10.7619/jcmp.202024039

外泌体微小RNA在慢性肾脏病中的研究进展

详细信息
  • 中图分类号: R692;Q343

Advances in exosomes microRNA in chronic kidney disease

  • 摘要: 慢性肾脏病(CKD)是目前人类重要致死原因之一,发病率逐年升高。部分患者在发现时已是终末期肾衰竭,预后较差,治疗费用较高。因此寻找新型早期诊断慢性肾脏病的生物标志物至关重要。外泌体衍生的微小RNA(miRNAs)可作为诊断CKD、评估CKD预后的敏感生物标志物,也可用于治疗CKD。本文对近年来外泌体miRNA在CKD中的研究进展进行综述,重点探讨不同来源的外泌体miRNA对CKD发生发展的作用机制以及在治疗中的作用,以期为CKD的早期诊断和治疗提供理论依据。
    Abstract: Chronic kidney disease(CKD)is currently one of the leading causes of death in human, and its incidence rate is increasing year by year. Some patients were found to have end-stage renal failure with poor prognosis and high treatment cost. Therefore, it is very important to find new biomarkers in early diagnosis of chronic kidney disease. Exosome-derived microRNAs(miRNAs)can be used as sensitive biomarkers for the diagnosis and assessment on prognosis of CKD as well as for the treatment of CKD. This paper reviewed the research progress of exosome miRNA in CKD in recent years. The action mechanism of different sources of exosome miRNAs on the occurrence and development of CKD and their roles in treatment were mainly discussed, so as to provide theoretical basis for the early diagnosis and treatment of CKD.
  • 张路霞, 赵明辉. 重视我国慢性肾脏病的疾病谱变迁及人群管理策略[J]. 中华内科杂志, 2017, 56(3): 161-162.

    DA SILVA NOVAES A, BORGES F T, MAQUIGUSSA E, et al. Influence of high glucose on mesangial cell-derived exosome composition, secretion and cell communication[J]. Sci Rep, 2019, 9(1): 6270-6270.

    KING H W, MICHAEL M Z, GLEADLE J M. Hypoxic enhancement of exosome release by breast cancer cells[J]. BMC Cancer, 2012, 12: 421-421.

    JOHNSTONE R M, ADAM M, HAMMOND J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles(exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420.

    徐孝东, 刘志红. 外泌体的生物学功能及其研究方法[J]. 肾脏病与透析肾移植杂志, 2017, 26(2): 159-163.

    VALADI H, EKSTRÖM K, BOSSIOS A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659.

    ABELS E R, BREAKEFIELD X O. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake[J]. Cell Mol Neurobiol, 2016, 36(3): 301-312.

    JIA Y J, ZHENG Z J, XUE M, et al. Extracellular vesicles from albumin-induced tubular epithelial cells promote the M1 macrophage phenotype by targeting klotho[J]. Mol Ther, 2019, 27(8): 1452-1466.

    LV L L, FENG Y, WU M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury[J]. Cell Death Differ, 2020, 27(1): 210-226.

    SHAO X, ZHANG S H, TANG Y, et al. Micro RNA-30b(inhibitor)nanoparticles suppressed the lipopolysaccharide(LPS)-induced acute kidney injury[J]. IET Nanobiotechnol, 2019, 13(9): 923-927.

    ZHANG L, HE S, WANG Y, et al. miRNA-20a suppressed lipopolysaccharide-induced HK-2 cells injury via NF-κB and ERK1/2 signaling by targeting CXCL12[J]. Mol Immunol, 2020, 118: 117-123.

    ZHU F M, CHONG LEE SHIN O L S, PEI G C, et al. Adipose-derived mesenchymal stem cells employed exosomes to attenuate AKI-CKD transition through tubular epithelial cell dependent Sox9 activation[J]. Oncotarget, 2017, 8(41): 70707-70726.

    COLLINO F, BRUNO S, INCARNATO D, et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying MicroRNAs[J]. J Am Soc Nephrol, 2015, 26(10): 2349-2360.

    TAPPARO M, BRUNO S, COLLINO F, et al. Renal regenerative potential of extracellular vesicles derived from miRNA-engineered mesenchymal stromal cells[J]. Int J Mol Sci, 2019, 20(10): E2381.

    WU Y L, XIE J, AN S W, et al. Inhibition of TRPC6 channels ameliorates renal fibrosis and contributes to renal protection by soluble klotho[J]. Kidney Int, 2017, 91(4): 830-841.

    HE J, WANG Y, LU X Y, et al. Micro-vesicles derived from bone marrow stem cells protect the kidney both in vivo and in vitro by microRNA-dependent repairing[J]. Nephrology(Carlton), 2015, 20(9): 591-600.

    WANG B, YAO K, HUUSKES B M, et al. Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis[J]. Mol Ther, 2016, 24(7): 1290-1301.

    ZHANG A Q, WANG H D, Wang B, et al. Exogenous miR-26a suppresses muscle wasting and renal fibrosis in obstructive kidney disease[J]. FASEB J, 2019, 33(12): 13590-13601.

    KIM H, BAE Y U, JEON J S, et al. The circulating exosomal microRNAs related to albuminuria in patients with diabetic nephropathy[J]. J Transl Med, 2019, 17(1): 236-236.

    WANG B, JHA J C, HAGIWARA S, et al. Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b[J]. Kidney Int, 2014, 85(2): 352-361.

    BRENNAN E P, NOLAN K A, BÖRGESON E, et al. Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFβR1[J]. J Am Soc Nephrol, 2013, 24(4): 627-637.

    FAN Q C, LU R H, ZHU M L, et al. Serum miR-192 is related to tubulointerstitial lesion and short-term disease progression in IgA nephropathy[J]. Nephron, 2019, 142(3): 195-207.

    WANG B, KOMERS R, CAREW R, et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis[J]. J Am Soc Nephrol, 2012, 23(2): 252-265.

    LV L L, CAO Y H, NI H F, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis[J]. Am J Physiol Renal Physiol, 2013, 305(8): F1220-F1227.

    LV C Y, DING W J, WANG Y L, et al. A PEG-based method for the isolation of urinary exosomes and its application in renal fibrosis diagnostics using cargo miR-29c and miR-21 analysis[J]. Int Urol Nephrol, 2018, 50(5): 973-982.

    CHUN-YAN L, ZHAO Z Y, YANG T L, et al. Liquid biopsy biomarkers of renal interstitial fibrosis based on urinary exosome[J]. Exp Mol Pathol, 2018, 105(2): 223-228.

    GRANGE C, SKOVRONOVA R, MARABESE F, et al. Stem cell-derived extracellular vesicles and kidney regeneration[J]. Cells, 2019, 8(10): E1240.

    LI Z L, LV L L, TANG T T, et al. HIF-1α inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation[J]. Kidney Int, 2019, 95(2): 388-404.

    YU J W, YU C L, FENG B Y, et al. Intrarenal microRNA signature related to the fibrosis process in chronic kidney disease: identification and functional validation of key miRNAs[J]. BMC Nephrol, 2019, 20(1): 336-339.

    WANG Z H, ZHANG B, CHEN Z, et al. The long noncoding RNA myocardial infarction-associated transcript modulates the epithelial-mesenchymal transition in renal interstitial fibrosis[J]. Life Sci, 2020, 241: 117187.

    MATHIESON P W. The podocyte as a target for therapies: new and old[J]. Nat Rev Nephrol, 2011, 8(1): 52-56.

    LAL M A, PATRAKKA J. Understanding podocyte biology to develop novel kidney therapeutics[J]. Front Endocrinol(Lausanne), 2018, 9: 409-412.

    HUANG H H, LIU H Y, TANG J Z, et al. M2 macrophage-derived exosomal miR-25-3p improves high glucose-induced podocytes injury through activation autophagy via inhibiting DUSP1 expression[J]. IUBMB Life, 2020, 72(12): 2651-2662.

    JIN J, WANG Y, ZHAO L, et al. Exosomal miRNA-215-5p derived from adipose-derived stem cells attenuates epithelial-mesenchymal transition of podocytes by inhibiting ZEB2[J]. Biomed Res Int, 2020, 2020: 2685305.

    BOCHON B, KOZUBSKA M, SURYGAŁA G, et al. Mesenchymal stem cells-potential applications in kidney diseases[J]. Int J Mol Sci, 2019, 20(10): E2462.

    EBRAHIM N, AHMED I A, HUSSIEN N I, et al. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway[J]. Cells, 2018, 7(12): E226.

    GUO Y, BAO S M, GUO W, et al. Bone marrow mesenchymal stem cell-derived exosomes alleviate high phosphorus-induced vascular smooth muscle cells calcification by modifying microRNA profiles[J]. Funct Integr Genomics, 2019, 19(4): 633-643.

  • 期刊类型引用(7)

    1. 刘业琼,王蕾,曹励欧,徐炜新. 中段尿样本病原菌快速检测方法的建立与评估. 分子诊断与治疗杂志. 2025(03): 441-444 . 百度学术
    2. 袁佳春,许明佳,许艳丹,李伟,叶玉龙. 上海金山区宾馆淋浴水和公共浴室水中嗜肺军团菌MALDI-TOF MS快速检测及聚类分析. 中国卫生检验杂志. 2023(04): 426-428 . 百度学术
    3. 张小云,刘本,连建春,姜玉章,唐朝贵,王霞. 质谱鉴定联合直接快速药敏试验在细菌血流感染中的应用. 医学信息. 2023(03): 98-103 . 百度学术
    4. 蒲玉熙,次仁央金,嘎松卓嘎,赵颖,刘治娟. 高原地区两种微生物鉴定系统对临床常见病原菌鉴定的一致性分析. 中国实用医药. 2023(07): 97-99 . 百度学术
    5. 吴奇福. ALDI-TOF MS技术在微生物检验中的应用效果及效能ROC曲线. 中国医药指南. 2023(16): 121-124 . 百度学术
    6. 任燕飞,张敏,杨涛,李荣凯,梁新. 下呼吸道感染病原体检测方法及相关病原体研究. 中国现代医生. 2022(25): 114-117 . 百度学术
    7. 张鞠玲,康琳,鲍春梅,王欢,贾天野,陈素明,庞君丽,李伯安. MALDI-TOF MS技术直接鉴定无菌体液病原菌的效果评价. 国际检验医学杂志. 2022(24): 3016-3021 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  280
  • HTML全文浏览量:  80
  • PDF下载量:  16
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-09-26
  • 网络出版日期:  2020-12-29

目录

    /

    返回文章
    返回
    x 关闭 永久关闭