Relationship between gyrA gene mutation in Mycobacterium tuberculosis and the minimum inhibitory concentration of fluoroquinolones in vitro
-
摘要:目的 探讨结核分枝杆菌gyrA基因突变与氟喹诺酮类药物体外最低抑菌浓度(MIC)的关系。方法 收集640例痰结核分枝杆菌阳性临床分离株,用探针熔解曲线法筛选gyrA基因耐药决定区突变株,对其gyrA基因耐药决定区进行测序,并检测氧氟沙星、左氧氟沙星、莫西沙星及加替沙星对不同突变位点菌株的MIC,分析其差异。结果 探针熔解曲线法筛选出gyrA突变株共45株(7.03%),其中90位点突变15株(33.33%)、94位点突变26株(57.78%)、91位点突变4株(8.89%)。90位点突变菌株中,氧氟沙星高水平耐药2株,左氧氟沙星无耐药,莫西沙星低水平耐药3株、高水平耐药2株,加替沙星高水平耐药3株;91位点突变菌株中,氧氟沙星、左氧氟沙星无耐药,莫西沙星高水平耐药2株,加替沙星高水平耐药1株;94位点突变菌株中,氧氟沙星低水平耐药4株、高水平耐药7株,左氧氟沙星低水平耐药7株,莫西沙星低水平耐药2株、高水平耐药13株,加替沙星低水平耐药3株、高水平耐药14株。除左氧氟沙星外,90位点突变菌株对其他3种药物易出现高水平耐药;91位点突变菌株对莫西沙星易出现高水平耐药;94位点突变菌株对莫西沙星、加替沙星多为高水平耐药,其中天冬氨酸(Asp)→天冬酰胺(Asn)和Asp→甘氨酸(Gly)突变类型的菌株更易出现。结论 结核分枝杆菌gyrA基因突变类型与氟喹诺酮类药物MIC相关,可为临床用药提供重要参考。Abstract:Objective To explore the relationship between gyrA gene mutation in Mycobacterium tuberculosis and the minimum inhibitory concentration (MIC) of fluoroquinolones in vitro.Methods Clinical isolated positive strains of Mycobacterium tuberculosis in 640 patients were collected. The probe solubility curve was used to screen strains with mutation of gyrA gene in the drug resistance determining region, and sequencing of the drug resistance determining region was performed. The MICs of ofloxacin, levofloxacin, moxifloxacin and gatifloxacin for strains with mutations at different loci were detected, and the differences were analyzed.Results A total of 45 strains (7.03%) with gyrA gene mutation were screened out by the probe solubility curve, including 15(33.33%) with the codon 90 mutation, 26(57.78%) with the codon 94 mutation, and 4(8.89%) with the codon 91 mutation. Among strains with the codon 90 mutation, 2 strains showed high resistance to ofloxacin, no levofloxacin-resistant strains were found, 3 showed low resistance to moxifloxacin, 2 showed high resistance to moxifloxacin, and 3 showed high resistance to gatifloxacin. Among strains with the codon 91 mutation, no ofloxacin or levofloxacin-resistant strains were found.Two strains showed high resistance to moxifloxacin, and 1 showed high resistance to gatifloxacin. Among strains with the codon 94 mutation, 4 strains showed low resistance and 7 showed highly resistant to ofloxacin, 7 showed low resistance to levofloxacin, 2 showed low resistance and 13 showed high resistance to moxifloxacin, 3 showed low resistance and 14 showed high resistance to gatifloxacin.For strains with the codon 90 mutation, except for levofloxacin, they were all highly resistant to the other drugs.Strains with the codon 91 mutation were prone to have high resistance to moxifloxacin, and strains with the codon 94 mutation were mostly highly resistant to moxifloxacin and gatifloxacin, especially those with Aspartic acid (Asp)→Asparagine (Asn) and Asp→Glycine (Gly).Conclusion The type of gyrA gene mutation in Mycobacterium tuberculosis is related to the MICs of fluoroquinolones, which provides important reference for clinical medication.
-
-
表 1 结核分枝杆菌分离株gyrA基因突变情况分析
位点 突变类型 氨基酸变化 菌株数/株 占比/% 90 gCg→gTg Ala→Val 15 33.33 91 Tcg→Ccg Ser→Pro 4 8.89 94 Gac→Tac Asp→Tyr 4 8.89 Gac→Aac Asp→Asn 6 13.33 gAc→gCc Asp→Ala 6 13.33 gAc→gGc Asp→Gly 10 22.22 Ala: 丙氨酸; Val: 缬氨酸; Ser: 丝氨酸; Pro: 脯氨酸; Asp: 天冬氨酸; Tyr: 酪氨酸; Asn: 天冬酰胺; Gly: 甘氨酸。 表 2 不同类型gyrA基因突变菌株的氧氟沙星耐药情况[n(%)]
突变类型 菌株数/株 表型DST 氧氟沙星MIC/(μg/mL) 低水平耐药菌株 高水平耐药菌株 1.000 2.000 4.000 8.000 16.000 32.000 90Ala→Val 15 0 2(13.33) 4(26.67) 9(60.00) 0 2(13.33) 0 0 91Ser→Pro 4 0 0 0 4(100.00) 0 0 0 0 94Asp→Tyr 4 0 1(25.00) 0 3(75.00) 0 1(25.00) 0 0 94Asp→Asn 6 2(33.33) 2(33.33) 0 2(33.33) 2(33.33) 2(33.33) 0 0 94Asp→Ala 6 0 0 0 6(100.00) 0 0 0 0 94Asp→Gly 10 2(20.00) 4(40.00) 1(10.00) 3(30.00) 2(20.00) 2(20.00) 2(20.00) 0 Ala: 丙氨酸; Val: 缬氨酸; Ser: 丝氨酸; Pro: 脯氨酸; Asp: 天冬氨酸; Tyr: 酪氨酸; Asn: 天冬酰胺; Gly: 甘氨酸; MIC: 最低抑菌浓度。 表 3 不同类型gyrA基因突变菌株的左氧氟沙星耐药情况[n(%)]
突变类型 菌株数/株 表型DST 左氧氟沙星MIC/(μg/mL) 低水平耐药菌株 高水平耐药菌株 0.250 0.500 1.000 2.000 4.000 8.000 16.000 90Ala→Val 15 0 0 0 8(53.33) 5(33.33) 2(13.33) 0 0 0 91Ser→Pro 4 0 0 0 0 4(100.00) 0 0 0 0 94Asp→Tyr 4 2(50.00) 0 0 0 0 2(50.00) 2(50.00) 0 0 94Asp→Asn 6 3(50.00) 0 0 0 2(33.33) 1(16.67) 3(50.00) 0 0 94Asp→Ala 6 0 0 0 0 2(33.33) 4(66.67) 0 0 0 94Asp→Gly 10 2(20.00) 0 0 0 4(40.00) 4(50.00) 2(20.00) 0 0 Ala: 丙氨酸; Val: 缬氨酸; Ser: 丝氨酸; Pro: 脯氨酸; Asp: 天冬氨酸; Tyr: 酪氨酸; Asn: 天冬酰胺; Gly: 甘氨酸; MIC: 最低抑菌浓度。 表 4 不同类型gyrA基因突变菌株的莫西沙星耐药情况[n(%)]
突变类型 菌株数/株 表型DST 莫西沙星MIC/(μg/mL) 低水平耐药菌株 高水平耐药菌株 0.250 0.500 1.000 2.000 4.000 8.000 16.000 90Ala→Val 15 3(20.00) 2(13.33) 6(40.00) 4(26.67) 3(20.00) 0 2(13.33) 0 0 91Ser→Pro 4 0 2(50.00) 0 2(50.00) 0 0 2(50.00) 0 0 94Asp→Tyr 4 0 2(50.00) 0 2(50.00) 0 0 2(50.00) 0 0 94Asp→Asn 6 0 4(66.67) 0 2(33.33) 0 0 4(66.66) 0 0 94Asp→Ala 6 2(33.33) 2(33.33) 0 2(33.33) 2(33.33) 0 2(33.33) 0 0 94Asp→Gly 10 0 5(50.00) 0 5(50.00) 0 0 2(20.00) 3(30.00) 0 Ala: 丙氨酸; Val: 缬氨酸; Ser: 丝氨酸; Pro: 脯氨酸; Asp: 天冬氨酸; Tyr: 酪氨酸; Asn: 天冬酰胺; Gly: 甘氨酸; MIC: 最低抑菌浓度。 表 5 不同类型gyrA基因突变菌株的加替沙星耐药情况[n(%)]
突变类型 菌株数/株 表型DST 加替沙星MIC/(μg/mL) 低水平耐药菌株 高水平耐药菌株 0.125 0.250 0.500 1.000 2.000 4.000 8.000 16.000 90Ala→Val 15 0 3(20.00) 7(46.67) 1(6.67) 3(20.00) 1(6.67) 0 3(20.00) 0 0 91Ser→Pro 4 0 1(25.00) 1(25.00) 1(25.00) 0 1(25.00) 0 1(25.00) 0 0 94Asp→Tyr 4 1(25.00) 2(50.00) 0 1(25.00) 0 0 1(25.00) 2(50.00) 0 0 94Asp→Asn 6 0 4(66.67) 1(16.67) 1(16.67) 0 0 0 4(66.67) 0 0 94Asp→Ala 6 1(16.67) 2(33.33) 0 2(33.33) 0 1(16.67) 1(16.67) 2(33.33) 0 0 94Asp→Gly 10 1(10.00) 6(60.00) 2(20.00) 0 0 1(10.00) 1(10.00) 4(40.00) 2(20.00) 0 Ala: 丙氨酸; Val: 缬氨酸; Ser: 丝氨酸; Pro: 脯氨酸; Asp: 天冬氨酸; Tyr: 酪氨酸; Asn: 天冬酰胺; Gly: 甘氨酸; MIC: 最低抑菌浓度。 -
[1] 王淑霞, 高微微. 耐药肺结核的诊断与治疗[J]. 临床内科杂志, 2020, 37(10): 681-683. doi: 10.3969/j.issn.1001-9057.2020.10.002 [2] 中国防痨协会. 耐药结核病化学治疗指南(2019年简版)[J]. 中国防痨杂志, 2019, 41(10): 1025-1073. doi: 10.3969/j.issn.1000-6621.2019.10.001 [3] CHANG C M, SHIH H I, WU C J, et al. Fluoroquinolone resistance in Haemophilus influenzae from nursing home residents in Taiwan: correlation of MICs and mutations in QRDRs[J]. J Appl Microbiol, 2020, 128(6): 1624-1633. doi: 10.1111/jam.14580
[4] ROY B, TOUSIF AHAMED S K, BANDYOPADHYAY B, et al. Development of quinolone resistance and prevalence of different virulence genes among Shigella flexneri and Shigella dysenteriae in environmental water samples[J]. Lett Appl Microbiol, 2020, 71(1): 86-93. doi: 10.1111/lam.13262
[5] SIRGEL F A, WARREN R M, STREICHER E M, et al. gyrA mutations and phenotypic susceptibility levels to ofloxacin and moxifloxacin in clinical isolates of Mycobacterium tuberculosis[J]. J Antimicrob Chemother, 2012, 67(5): 1088-1093. doi: 10.1093/jac/dks033
[6] ORGANIZATION W H. Policy Guidance on Drug-Susceptibility Testing (DST) of second-line antituberculosis drugs[J]. World Health Organization, 2008, 8(11): 524. http://www.ncbi.nlm.nih.gov/pubmed/26290924
[7] CHIEN J Y, CHIEN S T, CHIU W Y, et al. Moxifloxacin improves treatment outcomes in patients with ofloxacin-resistant multidrug-resistant tuberculosis[J]. Antimicrob Agents Chemother, 2016, 60(8): 4708-4716. doi: 10.1128/AAC.00425-16
[8] IMPERIALE B R, DI GIULIO Á B, ADRIÁN CATALDI A, et al. Evaluation of Mycobacterium tuberculosis cross-resistance to isoniazid, rifampicin and levofloxacin with their respective structural analogs[J]. J Antibiot: Tokyo, 2014, 67(11): 749-754. doi: 10.1038/ja.2014.61
[9] WANG Z, XIE T, MU C, et al. Performance of sequencing in predicting ofloxacin resistance in Mycobacterium tuberculosis from positive bactec MGIT 960 cultures[J]. Ann Clin Lab Sci, 2018, 48(1): 69-74. http://smartsearch.nstl.gov.cn/paper_detail.html?id=cf802a0f67302335f2faf2e09f8af29a
[10] 孟繁荣, 杨瑜, 雷杰, 等. 中国氟喹诺酮耐药结核分枝杆菌gyr基因序列特征分析[J]. 实用医学杂志, 2020, 36(11): 1503-1508. doi: 10.3969/j.issn.1006-5725.2020.11.019 [11] HAMEED H M A, TAN Y, ISLAM M M, et al. Phenotypic and genotypic characterization of levofloxacin-and moxifloxacin-resistant Mycobacterium tuberculosis clinical isolates in Southern China[J]. J Thorac Dis, 2019, 11(11): 4613-4625. doi: 10.21037/jtd.2019.11.03
[12] CHERNYAEVA E, FEDOROVA E, ZHEMKOVA G, et al. Characterization of multiple and extensively drug resistant Mycobacterium tuberculosis isolates with different ofloxacin-resistance levels[J]. Tuberculosis, 2013, 93(3): 291-295. doi: 10.1016/j.tube.2013.02.005
[13] KAMBLI P, AJBANI K, NIKAM C, et al. Determination of MICs of levofloxacin for Mycobacterium tuberculosis with gyrA mutations[J]. Int J Tuberc Lung Dis, 2015, 19(10): 1227-1229. doi: 10.5588/ijtld.14.0277
[14] ABDELAZEEM W M, ZOLNIKOV T R, MOHAMMED Z R, et al. Virulence, antimicrobial resistance and phylogenetic analysis of zoonotic walking pneumonia Mycoplasma arginini in the one-humped camel (Camelus dromedarius)[J]. Acta Trop, 2020, 207: 105500. doi: 10.1016/j.actatropica.2020.105500
[15] HUO F, MA Y, LI S, et al. Specific gyrA gene mutations correlate with high prevalence of discordant levofloxacin resistance in Mycobacterium tuberculosis isolates from Beijing, China[J]. J Mol Diagn, 2020, 22(9): 1199-1204. doi: 10.1016/j.jmoldx.2020.06.010
[16] KORNE-ELENBAAS J D, POL A, VET J, et al. Simultaneous detection of Neisseria gonorrhoeae and fluoroquinolone resistance mutations to enable rapid prescription of oral antibiotics[J]. Sex Transm Dis, 2020, 47(4): 238-242. doi: 10.1097/OLQ.0000000000001141
[17] JIAN M J, CHENG Y H, CHUNG H Y, et al. Fluoroquinolone resistance in carbapenem-resistant Elizabethkingia anophelis: phenotypic and genotypic characteristics of clinical isolates with topoisomerase mutations and comparative genomic analysis[J]. J Antimicrob Chemother, 2019, 74(6): 1503-1510. doi: 10.1093/jac/dkz045
[18] 张志国, 杜春英, 张倩. 我国结核分枝杆菌gyrA不同突变类型对氟喹诺酮类药物耐药水平的相关性研究[J]. 中国防痨杂志, 2016, 38(9): 706-711. doi: 10.3969/j.issn.1000-6621.2016.09.003 [19] 高敏, 杨婷婷, 李桂莲, 等. 基于全基因组测序的我国耐多药结核分枝杆菌耐药突变特征分析[J]. 中华流行病学杂志, 2020, 41(5): 770-775. doi: 10.3760/cma.j.cn112338-20191111-00800 [20] EDWARDS B D, EDWARDS J, COOPER R, et al. Incidence, treatment, and outcomes of isoniazid mono-resistant Mycobacterium tuberculosis infections in Alberta, Canada from 2007-2017[J]. PLoS One, 2020, 15(3): e0229691. doi: 10.1371/journal.pone.0229691
[21] XU Z, CAVE R, CHEN L, et al. Antibiotic resistance and molecular characteristics of methicillin-resistant Staphylococcus epidermidis recovered from hospital personnel in China[J]. J Glob Antimicrob Resist, 2020, 22: 195-201. doi: 10.1016/j.jgar.2020.02.013
-
期刊类型引用(25)
1. 吴婧,刘星初. 芬太尼复合罗哌卡因行双侧TAPB镇痛对急诊剖宫产术后母婴安全 寒战及泌乳的影响. 中国妇幼保健. 2025(04): 626-630 . 百度学术
2. 项巧鸯,胡壮文,陈剑. 术前不同剂量罗哌卡因腹横肌平面阻滞对腹腔镜卵巢癌根治术患者苏醒质量 认知功能及镇痛效果的影响. 中国妇幼保健. 2024(01): 176-179 . 百度学术
3. 武庆涛,徐凯利,张轩宇. 右美托咪定应用剂量对剖宫产产妇术后疼痛及康复的影响. 临床医学工程. 2024(01): 27-28 . 百度学术
4. 汪伟,程勤耘,杜伏杨,程典萍. 剖宫产术后地塞米松、右美托咪定复合罗哌卡因行腹横肌平面阻滞镇痛效果. 中国计划生育学杂志. 2024(07): 1513-1518 . 百度学术
5. 覃思雨,舒斌,段光友,黄河,但伶. 腹横肌平面阻滞效果影响因素的研究进展. 局解手术学杂志. 2023(04): 363-367 . 百度学术
6. 魏丽青,王永强,程旭东,胡建英,朱秀清. 盐酸纳布啡对足月剖宫产产妇疼痛评分清醒时间及不良反应的影响. 中国妇幼保健. 2023(14): 2553-2558 . 百度学术
7. 韩萍,张延娇. 超声引导腹横肌平面阻滞联合右美托咪定用于剖宫产术后镇痛的效果及对母婴免疫功能的影响. 海南医学. 2023(16): 2344-2348 . 百度学术
8. 方丽林. 艾司氯胺酮在剖宫产术后镇痛中的应用效果及对产妇术后康复质量的影响. 中国医学创新. 2023(28): 137-141 . 百度学术
9. 刘丹,沈佳佳. 中药贴敷联合健康教育对剖宫产术后患者睡眠质量和泌乳功能的影响. 中国妇幼保健. 2022(02): 342-345 . 百度学术
10. 潘先凤,张海萍,周龑,陈旭,谢晓海,赵光耀,曾薇. 罗哌卡因复合右美托咪定腹横肌平面阻滞在剖宫产患者中的应用价值. 成都医学院学报. 2022(02): 197-200 . 百度学术
11. 赵建益,刘宇,单晓山,胡孙浩. 腹横筋膜平面阻滞联合剖宫产术后静脉自控镇痛对产妇泌乳功能及性功能的影响. 中国性科学. 2022(06): 99-102 . 百度学术
12. 孙颖,刘庄,刘晓利,赵倩倩,阮芳. 右美托咪定和芬太尼分别联合罗哌卡因对腹横肌平面阻滞剖宫产产妇的影响. 实用临床医药杂志. 2022(14): 109-113 . 本站查看
13. 贾佳,于悦,聂洋洋,文爱平. 超声引导下腰方肌阻滞与腹横肌阻滞对剖宫产术后镇痛 血流动力学及氧化应激水平的影响. 中国妇幼保健. 2022(21): 4076-4079 . 百度学术
14. 王伟明. 超声引导髂腹下/髂腹股沟神经阻滞对剖宫产术后镇痛效果的影响. 中国医药导报. 2021(01): 119-122 . 百度学术
15. 汪俊. 不同浓度右美托咪定联合罗哌卡因应用于剖宫产术后腹横肌平面阻滞镇痛中的效果比较. 临床合理用药杂志. 2021(14): 103-105 . 百度学术
16. 吕小艳. 地塞米松对罗哌卡因用于剖宫产术后TAP阻滞镇痛效果的影响分析. 黑龙江中医药. 2021(01): 117-118 . 百度学术
17. 彭德亮. 腹横筋膜阻滞联合喉罩全麻对行剖宫产术产妇SBP、HR、BIS的影响. 医学理论与实践. 2021(11): 1913-1915 . 百度学术
18. 林琳. 超声引导下双侧腹横肌平面阻滞对剖宫产产妇术后疼痛度及PCIA用药量的影响. 哈尔滨医药. 2021(04): 74-75 . 百度学术
19. 王平,沈刚,徐德芬. 不同剂量右美托咪定腹横肌平面阻滞对剖宫产术后产妇镇痛效果及泌乳功能的影响. 海南医学. 2021(18): 2365-2368 . 百度学术
20. 王萍,陈瑞琼,卢凤仙. 剖宫产术后产妇入复苏室的观察与护理. 中国社区医师. 2021(27): 159-160 . 百度学术
21. 刘忠,缪凡,赵鸿雁,刘娟,路峰,张承民. 右美托咪定复合罗哌卡因对剖宫产产妇血流动力学和应激反应的影响. 武警后勤学院学报(医学版). 2021(11): 32-33+36 . 百度学术
22. 么娜,蔺杰,贾玉刚. TAPB联合剖宫产术后应用舒芬太尼静脉自控镇痛对产妇应激反应和舒适度的影响. 中国性科学. 2020(08): 55-58 . 百度学术
23. 林锐波,周慧芬,高星,周良军,袁鹏飞. B超引导下腹横肌平面阻滞于剖宫产术后静脉自控镇痛的应用. 中国社区医师. 2020(26): 39-41 . 百度学术
24. 王亚丽,贾树山. 超声引导下行腹横肌平面阻滞对二次剖宫产产妇术后疼痛及泌乳素水平的影响. 现代医学与健康研究电子杂志. 2020(16): 4-7 . 百度学术
25. 张长满,王世民,赵雪峰. 右美托咪定复合罗哌卡因对剖宫产产妇血流动力学、应激反应指标的影响. 中国妇幼保健. 2019(18): 4172-4175 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 506
- HTML全文浏览量: 340
- PDF下载量: 59
- 被引次数: 26