成纤维细胞生长因子-21与2型糖尿病及血管并发症关联性研究进展

杨松, 王超楠, 谷媛媛

杨松, 王超楠, 谷媛媛. 成纤维细胞生长因子-21与2型糖尿病及血管并发症关联性研究进展[J]. 实用临床医药杂志, 2021, 25(15): 128-132. DOI: 10.7619/jcmp.20210947
引用本文: 杨松, 王超楠, 谷媛媛. 成纤维细胞生长因子-21与2型糖尿病及血管并发症关联性研究进展[J]. 实用临床医药杂志, 2021, 25(15): 128-132. DOI: 10.7619/jcmp.20210947
YANG Song, WANG Chaonan, GU Yuanyuan. Research advance in correlations between fibroblast growth factor-21 and occurrence as well as development of vascular complications of type 2 diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2021, 25(15): 128-132. DOI: 10.7619/jcmp.20210947
Citation: YANG Song, WANG Chaonan, GU Yuanyuan. Research advance in correlations between fibroblast growth factor-21 and occurrence as well as development of vascular complications of type 2 diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2021, 25(15): 128-132. DOI: 10.7619/jcmp.20210947

成纤维细胞生长因子-21与2型糖尿病及血管并发症关联性研究进展

基金项目: 

山东省医药卫生科技发展计划项目 2018WS153

详细信息
  • 中图分类号: R587.2;R543

Research advance in correlations between fibroblast growth factor-21 and occurrence as well as development of vascular complications of type 2 diabetes mellitus

  • 摘要: 2型糖尿病(T2DM)是常见的慢性代谢性疾病,慢性并发症尤其是血管并发症是其主要危害。成纤维细胞生长因子-21(FGF-21)作为近年来新发现的代谢调节因子,被认为与T2DM的发生及糖尿病并发症的发生、发展密切相关。本文对FGF-21与糖尿病微血管并发症及大血管并发症相关研究进展进行综述。FGF-21作为糖尿病血管并发症的生物标志物或治疗靶点的作用值得进一步研究,对于T2DM血管并发症的预测具有重要价值。
    Abstract: Type 2 diabetes(T2DM) is a common chronic metabolic disease, and its chronic complications, especially vascular complications, are the main damages of T2DM. Fibroblast growth factor-21(FGF-21) is a newly discovered metabolism regulator, which is considered to be closely linked to the development of T2DM and its complications. We summarized relevant studies about FGF-21 in vascular and macrovascular complications of T2DM. The role of FGF-21 as a biomarker or therapeutic target for vascular complications of T2DM requires further investigations, and its application in predicting vascular complications of T2DM has significant value.
  • 子痫前期(PE)属于妊娠期高血压疾病,是妊娠期特有的一种并发症,发生率为2%~5%[1-2]。PE可导致孕产妇发生子痫、肝肾功能衰竭甚至死亡,同时可引发早产和胎儿生长受限等问题[3]。PE的发病机制十分复杂,研究[4]表明,妊娠时PE患者的血管内皮受损和全身炎症、免疫反应可能与发病机制密切相关。BURTONG J等[5]研究发现,CXC型趋化因子配体12(CXCL12)具有多种功能,包括趋化、血管生成、血管转移、干细胞归巢和器官发生等,与血管内皮变化关系密切。人类软骨糖蛋白-39(YKL-40)参与了细胞的增殖与活化、血管生成、细胞凋亡以及炎症应答等过程[6]。本研究采用酶联免疫吸附试验(ELISA)和免疫组化法(IHC)检测正常晚期妊娠孕妇和PE患者血清和胎盘组织中CXCL12和YKL-40的表达,探讨CXCL12、YKL-40与PE发病机制的关系,现报告如下。

    选取2018年8月-2021年7月在江苏省扬州大学临床医学院产科住院分娩的100例孕妇,其中50例正常妊娠孕妇设为对照组, 50例PE孕妇设为PE组, PE诊断标准依据《妇产科学(第9版)》[7]。2组孕妇的孕周、孕产次、年龄、体质量指数比较,差异无统计学意义(P>0.05), 2组孕妇均未临产,均无产科其他合并症,分娩方式均为剖宫产。排除有感染、免疫性疾病、原发性高血压、肾脏疾病的患者; 排除有吸烟、酗酒等不良生活习惯的患者; 排除有输血、手术及外伤史的患者。

    收集孕妇空腹静脉血, 3 000转/min分离血清。采用ELISA测定孕妇血中CXCL12和YKL-40浓度,试剂购自美国Life Science公司,按照试剂盒说明书操作。采用IHC两步法对2组孕妇胎盘组织中CXCL12、YKL-40的蛋白表达情况进行检测(具体步骤参照所购试剂盒操作说明书)。CXC12L、YKL-40一抗的工作浓度均为1∶ 200, 设置空白对照[采用磷酸盐缓冲液(PBS)代替一抗]。

    获得各标准品及样本光密度值(OD值),再减去空白孔的OD值,而后作图。选取标准品的浓度作为纵坐标,选取OD值为横坐标,绘制标准曲线; 根据样品的OD值,依据标准曲线查出相应的浓度,乘以稀释倍数即为样品的实际浓度。

    采用染色积分评价标准,对CXCL12、YKL-40蛋白的表达水平进行检测,在每张切片中随机选取10个视野,在显微镜高倍镜下观察(放大倍数400倍),结果出现细胞核或细胞浆内棕黄色颗粒即为阳性染色。根据每张切片上染色强度及阳性细胞百分率综合分析: 0~1分为(-); 2~3分为(+); 4~5分为(); 5~6分为()。

    采用SPSS 22.0软件分析数据,计量资料采用(x±s)表示,采用t检验和方差分析进行统计学分析,相关性分析采用Pearson相关分析及Spearman等级分析, P<0.05为差异有统计学意义。

    2组孕妇的年龄、孕周、体质量指数比较,差异无统计学意义(P>0.05); PE组收缩压、舒张压、24 h尿蛋白定量高于对照组,新生儿出生体质量低于对照组,差异有统计学意义(P<0.05)。见表 1

    表  1  2组孕妇一般资料比较(x±s)
    一般资料 对照组(n=50) PE组(n=50)
    年龄/岁 26.45±3.10 28.98±3.38
    孕周/周 38.30±0.79 35.67±3.51
    体质量指数/(kg/m2) 27.36±3.12 29.65±2.13
    收缩压/mmHg 116.30±5.78 151.92±9.64*
    舒张压/mmHg 76.10±6.83 108.90±9.25*
    24 h尿蛋白定量/g 0.15±0.05 3.11±2.58*
    新生儿出生体质量/g 3 209.20±309.06 2 394.28±312.38*
    与对照组比较, * P<0.05。
    下载: 导出CSV 
    | 显示表格

    PE组患者血清CXCL12、YKL-40水平高于对照组,差异均有统计学意义(P<0.05), 见表 2

    表  2  2组血清CXCL12表达比较(x±s)  ng/mL
    组别 n CXCL12 YKL-40
    对照组 50 8.43±4.20 88.20±21.40
    PE组 50 24.70±5.76* 119.52±46.38*
    CXCL12: CXC型趋化因子配体12;
    YKL-40: 人类软骨糖蛋白-39。与对照组比较, * P<0.05。
    下载: 导出CSV 
    | 显示表格

    IHC发现, CXCL12蛋白主要表达于胎盘合体滋养层细胞, PE组胎盘组织中CXCL12的表达强度高于对照组,差异有统计学意义(χ2=5.367, P<0.05)。见表 3。YKL-40蛋白在妊娠阶段主要表达于胎盘合体滋养层细胞,胞核及间质细胞的胞浆也有少量表达, PE组胎盘组织中YKL-40的表达强度高于对照组,差异有统计学意义(χ2=6.472, P<0.05)。见表 4

    表  3  2组胎盘组织中CXCL12蛋白表达水平比较
    组别 n CXCL12表达强度 χ2 P
    - +
    对照组 50 31 12 7 0 5.367 0.005
    PE组 50 7 10 17 16
    下载: 导出CSV 
    | 显示表格
    表  4  2组胎盘组织中YKL-40蛋白表达水平比较
    组别 n YKL-40表达强度 χ2 P
    - +
    对照组 50 24 17 9 0 6.472 0.005
    PE组 50 4 8 18 20
    下载: 导出CSV 
    | 显示表格

    PE是妊娠期特有并发症,症状主要为高血压、蛋白尿,严重者可引起子痫,导致多器官功能衰竭,是导致围产期母婴死亡的主要原因。近年来,国外学者[3-5, 7]提出了PE病因学的两步学说: 第一步发生在妊娠早期,发育不良的滋养层细胞导致了胎盘形成不良,引发胎盘缺血缺氧; 第二步是胎盘缺氧进一步加重,包括炎症因子等许多因子释放到母体循环中,导致了母体免疫-炎症系统失衡和内皮细胞功能紊乱,进而引发PE临床症状。PE的两步学说认为PE的发生机制可能与胎盘血管病变导致缺氧和母体免疫-炎症系统失衡有关,正常孕妇体内同样存在轻微炎症应答,但PE孕妇免疫-炎症系统失衡促使炎症应答被放大,导致PE发生。目前研究[1-5]发现, PE孕妇较正常妊娠孕妇的趋化因子和炎性因子水平显著升高,提示在PE的发生机制中,血管内皮受损和免疫-炎症系统失衡可能发挥了作用。

    趋化因子包括稳态CXCL12和炎症趋化因子CXCL9、CXCL10等[8-10]。CXCL12的功能主要是控制细胞定向移动,在介导炎症反应、参与多种功能活动如造血干细胞迁移及归巢、恶性血液系统肿瘤的转移和侵润等方面都起着重要的作用[8-10]。CXCL12与CXCR4是一对独特的趋化因子受体-配体,其相互作用不仅影响免疫细胞的活化、迁移、募集等,还参与肿瘤侵袭及转移过程[9]。此外,在血管生成与血管再生方面, CXCL12也发挥了关键作用[10]。目前普遍认为绒毛外滋养细胞在建立子宫胎盘血液循环过程中,通过侵蚀子宫螺旋小动脉产生滋养细胞浅着床是妊娠期高血压发病的关键环节。研究[11-12]发现, CXCL12在PE患者胎盘中表达呈阳性,且随着病情严重程度的增加,其表达也逐步增强。研究[12]发现, CXCL12在胎盘组织中的表达可能主要在妊娠早期发挥作用。CXCL12及其受体广泛存在于胎盘组织和细胞中, CXCL12通过多个过程干扰母胎界面,如胎盘侵袭和胎盘血管生成,影响胎盘和胎儿形成。研究[13-14]表明, IHC显示PE胎盘组织中CXCL12上调可能是代偿机制的结果。氧气对妊娠至关重要,CXCL12的表达通常与缺氧环境有关,缺氧会刺激滋养层细胞而增强CXCL12的表达[15]

    目前已有研究单独对趋化因子CXCL10、CXCL12在PE的表达进行了分析,但研究结果[10, 12, 16-17]并不一致。由于PE病因和发病机制十分复杂,可能是多种因素在PE早期和中晚期同时共同作用的结果,且在PE早期和中晚期的作用机制也可能不一致。既往研究[16-17]发现稳态CXCL12和炎症趋化因子CXCL9、CXCL10、CXCL12在PE的表达结果有所不同, CXCL12可能只在PE早期有变化。但近期研究[18-19]在PE早期发现趋化因子CXCL12与慢性炎症和免疫激活有关, CXCL12趋化因子参与PE早期的发病机制,并在PE发生的异常新生血管形成、胚胎发育和炎症反应中发挥重要作用。PE患者早期趋化因子的变化可能是一种代偿现象,当促炎趋化因子水平升高后,特别是在妊娠期中晚期,全身炎症因子水平升高,导致CXCL12失去稳定状态,与炎症趋化因子CXCL9、CXCL10等共同参与炎症免疫反应,加重了PE器官病变[18-19]。本研究发现, PE患者CXCL12水平升高,提示机体出现趋化因子和促炎免疫细胞、细胞因子增加,如胎盘急性炎症病变的细胞因子白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)及YKL-40等水平升高,进一步会导致母体系统内皮功能障碍,促进PE病情发展[20], 这与PE病因学的两步学说一致。

    在哺乳动物中, YKL-40主要由多种炎性相关细胞合成和分泌,如巨噬细胞、肝星状细胞、血管平滑肌细胞、中性粒细胞和软骨细胞。因此,这种蛋白质被称为相关的急性和慢性炎症进展的生物标志物[21-22]。YKL-40在先天免疫系统激活和细胞外基质重塑中发挥重要作用, YKL-40通过各种免疫细胞如中性粒细胞、巨噬细胞、内皮细胞等参与免疫和炎症反应; YKL-40还是一种有效的血管生成因子,特别是在动脉粥样硬化斑块的形成中发挥作用,许多促炎细胞因子如IL-6、TNF、IL-13和IL-18可以上调YKL-40表达,促进血管生成和各种炎症反应。DENG Y J等[22]发现YKL-40可能参与了胎盘的生成和发育以及人类胚胎干细胞的分化,但YKL-40在胎盘中的确切作用以及如何参与转化为母体血浆中的YKL-40尚未明确。本研究发现,在正常妊娠孕妇和PE患者的血清和胎盘组织中YKL-40均有表达,但是PE患者YKL-40的表达水平显著高于正常对照组,推测PE的发生发展与YKL-40的表达有关系,这可能与YKL-40参与血管生成和炎症反应有关。研究[23-24]报道,炎症细胞因子TNF-α、IL-1β可以通过核因子κB(NF-κB)信号突进诱导YKL-40在软骨细胞的表达和持续性分泌,在YKL-40的启动子区域亦含有NF-κB的结合位点, YKL-40的表达可能受NF-κB的调控。最新的对PE病因学的研究[25]更倾向于母体炎症系统激活的说法,炎症与PE的关系甚为密切,易感机体在内在因素和外在因素共同作用之下,激活了NF-κB, 并与YKL-40启动子上的NF-κB结合位点结合,导致YKL-40表达增加,从而引起体内炎症因子的释放,从而导致PE患者母体和胎儿发生一些临床症状,但尚待进一步的研究[26]确认。

    综上所述,本研究发现CXCL12、YKL-40在PE患者中高表达,但具体的调节机制尚未阐明,只是说明PE可能与血管内皮受损和炎症免疫相关,后续需要进一步监测PE患者不同时期的血清CXCL12和YKL-40水平变化,这对动态监测PE患者病情变化、及时治疗具有一定的意义。

  • [1]

    LI Y, TENG D, SHI X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study[J]. Bmj, 2020, 369: 997.

    [2]

    CHEN C, CHEUNG B M, TSO A W, et al. High plasma level of fibroblast growth factor 21 is an Independent predictor of type 2 diabetes: a 5. 4-year population-based prospective study in Chinese subjects[J]. Diabetes Care, 2011, 34(9): 2113-2115. doi: 10.2337/dc11-0294

    [3]

    BABAKNEJAD N, NAYERI H, HEMMATI R, et al. An Overview of FGF19 and FGF21: The Therapeutic Role in the Treatment of the Metabolic Disorders and Obesity[J]. Horm Metab Res, 2018, 50(6): 441-452. doi: 10.1055/a-0623-2909

    [4]

    XIAO F, GUO Y, DENG J, et al. Hepatic c-Jun regulates glucose metabolism via FGF21 and modulates body temperature through the neural signals[J]. Mol Metab, 2019, 20: 138-148. doi: 10.1016/j.molmet.2018.12.003

    [5]

    CHO Y M, KIM D H, LEE K H, et al. The IRE1α-XBP1s pathway promotes insulin-stimulated glucose uptake in adipocytes by increasing PPARγ activity[J]. Exp Mol Med, 2018, 50(8): 1-15. http://www.ncbi.nlm.nih.gov/pubmed/30111834

    [6] 周博, 郭秦乐, 李会霞, 等. 成纤维细胞生长因子21通过抑制肥胖小鼠肝脏氧化应激改善胰岛素抵抗[J]. 西安交通大学学报(医学版), 2017, 38(02): 161-165, 187. https://www.cnki.com.cn/Article/CJFDTOTAL-XAYX201702002.htm
    [7]

    HSU J W, YEH S C, TSAI F Y, et al. Fibroblast growth factor 21 secretion enhances glucose uptake in mono(2-ethylhexyl)phthalate-treated adipocytes[J]. Toxicol In Vitro, 2019, 59: 246-254. doi: 10.1016/j.tiv.2019.04.021

    [8]

    MAIDA A, ZOTA A, VEGIOPOULOS A, et al. Dietary protein dilution limits dyslipidemia in obesity through FGF21-driven fatty acid clearance[J]. J Nutr Biochem, 2018, 57: 189-196. doi: 10.1016/j.jnutbio.2018.03.027

    [9]

    LI X, GE H, WEISZMANN J, et al. Inhibition of lipolysis may contribute to the acute regulation of plasma FFA and glucose by FGF21 in ob/ob mice[J]. FEBS Lett, 2009, 583(19): 3230-3234. doi: 10.1016/j.febslet.2009.09.012

    [10]

    ZHANG F, YU L, LIN X, et al. Minireview: Roles of Fibroblast Growth Factors 19 and 21 in Metabolic Regulation and Chronic Diseases[J]. Mol Endocrinol, 2015, 29(10): 1400-1413. doi: 10.1210/me.2015-1155

    [11]

    HUANG Z, XU A, CHEUNG B M Y. The Potential Role of Fibroblast Growth Factor 21 in Lipid Metabolism and Hypertension[J]. CURR HYPERTENS REP, 2017, 19(4): 28. doi: 10.1007/s11906-017-0730-5

    [12]

    CUEVAS-RAMOS D, MEHTA R, AGUILAR-SALINAS C A. Fibroblast Growth Factor 21 and Browning of White Adipose Tissue[J]. FRONT PHYSIOL, 2019, 10: 37. doi: 10.3389/fphys.2019.00037

    [13]

    GENG L, LAM K S L, XU A. the therapeutic Potentlal of FGF21 in metabolic diseases: from bench to clinic[J]. Nat Rev Endocrinol, 2020, 16(11): 654-667. doi: 10.1038/s41574-020-0386-0

    [14]

    SARAN R, ROBINSON B, ABBOTT K C, et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States[J]. Am J Kidney Dis, 2020, 75(1 Suppl 1): A6-A7. http://www.cghjournal.org/article/S0272-6386(15)00744-1/pdf

    [15]

    AN S Y, LEE M S, YI S A, et al. Serum fibroblast growth factor 21 was elevated in subjects with type 2 diabetes mellitus and was associated with the presence of carotid artery plaques[J]. Diabetes Research and Clinical Practice, 2012, 96(2): 196-203. doi: 10.1016/j.diabres.2012.01.004

    [16]

    HINDRICKS J, EBERT T, BACHMANN A, et al. Serum levels of fibroblast growth factor-21 are increased in chronic and acute renal dysfunction[J]. Clin Endocrinol: Oxf, 2014, 80(6): 918-924. doi: 10.1111/cen.12380

    [17]

    JIAN W X, PENG W H, JIN J, et al. Association between serum fibroblast growth factor 21 and diabetic nephropathy[J]. Metabolism, 2012, 61(6): 853-859. doi: 10.1016/j.metabol.2011.10.012

    [18]

    LEE C H, HUI E Y, WOO Y C, et al. Circulating fibroblast growth factor 21 levels predict progressive kidney disease in subjects with type 2 diabetes and normoalbuminuria[J]. J Clin Endocrinol Metab, 2015, 100(4): 1368-1375. doi: 10.1210/jc.2014-3465

    [19]

    ZHANG C, SHAO M, YANG H, et al. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation[J]. PLoS One, 2013, 8(12): e82275. doi: 10.1371/journal.pone.0082275

    [20]

    KIM H W, LEE J E, CHA J J, et al. Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice[J]. Endocrinology, 2013, 154(9): 3366-3376. doi: 10.1210/en.2012-2276

    [21]

    LIN S, YU L, NI Y, et al. Fibroblast Growth Factor 21 Attenuates Diabetes-Induced Renal Fibrosis by Negatively Regulating TGF-β-p53-Smad2/3-Mediated Epithelial-to-Mesenchymal Transition via Activation of AKT[J]. Diabetes Metab J, 2020, 44(1): 158-172. doi: 10.4093/dmj.2018.0235

    [22]

    LIN Y, XIAO Y C, ZHU H, et al. Serum fibroblast growth factor 21 levels are correlated with the severity of diabetic retinopathy[J]. J Diabetes Res, 2014, 2014: 929756. http://www.biomedsearch.com/attachments/00/24/89/56/24895642/JDR2014-929756.pdf

    [23]

    ESTEGHAMATI A, MOMENI A, ABDOLLAHI A, et al. Serum fibroblast growth factor 21 concentrations in type 2 diabetic retinopathy patients[J]. Ann Endocrinol (Paris), 2016, 77(5): 586-592. doi: 10.1016/j.ando.2016.01.005

    [24]

    ONG K L, JANUSZEWSKI A S, O'CONNELL R, et al. Relationship of fibroblast growth factor 21 with baseline and new on-study microvascular disease in the Fenofibrate Intervention and Event Lowering in Diabetes study[J]. Diabetologia, 2015, 58(9): 2035-2044. doi: 10.1007/s00125-015-3652-2

    [25]

    JUNG C H, JUNG S H, KIM B Y, et al. The U-shaped relationship between fibroblast growth factor 21 and microvascular complication in type 2 diabetes mellitus[J]. J Diabetes Complications, 2017, 31(1): 134-140. doi: 10.1016/j.jdiacomp.2016.10.017

    [26]

    STRUIK D, DOMMERHOLT M B, JONKER J W. Fibroblast growth factors in control of lipid metabolism: from biological function to clinical application[J]. Curr Opin Lipidol, 2019, 30(3): 235-243. doi: 10.1097/MOL.0000000000000599

    [27]

    FU Z, LOFQVIST C A, SHAO Z, et al. Dietary ω-3 polyunsaturated fatty acids decrease retinal neovascularization by adipose-endoplasmic reticulum stress reduction to increase adiponectin[J]. Am J Clin Nutr, 2015, 101(4): 879-888. doi: 10.3945/ajcn.114.099291

    [28]

    FU Z, WANG Z, LIU C H, et al. Fibroblast Growth Factor 21 Protects Photoreceptor Function in Type 1 Diabetic Mice[J]. Diabetes, 2018, 67(5): 974-985. doi: 10.2337/db17-0830

    [29]

    CHOW W S, XU A, WOO Y C, et al. Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors[J]. Arterioscler Thromb Vasc Biol, 2013, 33(10): 2454-2459. doi: 10.1161/ATVBAHA.113.301599

    [30]

    YAFEI S, ELSEWY F, YOUSSEF E, et al. Fibroblast growth factor 21 association with subclinical atherosclerosis and arterial stiffness in type 2 diabetes[J]. Diabetes Metab Syndr, 2019, 13(1): 882-888. doi: 10.1016/j.dsx.2018.12.007

    [31]

    XIAO Y, LIU L, XU A, et al. Serum fibroblast growth factor 21 levels are related to subclinical atherosclerosis in patients with type 2 diabetes[J]. Cardiovasc Diabetol, 2015, 14: 72. doi: 10.1186/s12933-015-0229-9

    [32]

    LIN Z, PAN X, WU F, et al. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice[J]. Circulation, 2015, 131(21): 1861-1871. doi: 10.1161/CIRCULATIONAHA.115.015308

    [33] 叶青, 董朝晖. 血清成纤维细胞生长因子-21在2型糖尿病合并冠心病中的作用研究[J]. 全科医学临床与教育, 2012, 10(5): 496-499. doi: 10.3969/j.issn.1672-3686.2012.05.005
    [34] 伍熙, 赵东晖, 范谦, 等. 成纤维细胞生长因子21对载脂蛋白E基因敲除小鼠动脉粥样硬化病变中内质网应激诱导的凋亡的影响[J]. 中国动脉硬化杂志, 2014, 22(4): 325-329. https://www.cnki.com.cn/Article/CJFDTOTAL-KDYZ201404001.htm
    [35]

    LENART-LIPIÑSKA M, MATYJASZEK-MATUSZEK B, GERNAND W, et al. Serum fibroblast growth factor 21 is predictive of combined cardiovascular morbidity and mortality in patients with type 2 diabetes at a relatively short-term follow-up[J]. Diabetes Res Clin Pract, 2013, 101(2): 194-200. doi: 10.1016/j.diabres.2013.04.010

    [36]

    ONG K L, JANUSZEWSKI A S, O'CONNELL R, et al. The relationship of fibroblast growth factor 21 with cardiovascular outcome events in the Fenofibrate Intervention and Event Lowering in Diabetes study[J]. Diabetologia, 2015, 58(3): 464-473. doi: 10.1007/s00125-014-3458-7

    [37]

    LEE C H, WOO Y C, CHOW W S, et al. Role of Circulating Fibroblast Growth Factor 21 Measurement in Primary Prevention of Coronary Heart Disease Among Chinese Patients With Type 2 Diabetes Mellitus[J]. J Am Heart Assoc, 2017, 6(6): 115-118.

    [38]

    JIN L, LIN Z, XU A. Fibroblast Growth Factor 21 Protects against Atherosclerosis via Fine-Tuning the Multiorgan Crosstalk[J]. Diabetes Metab J, 2016, 40(1): 22-31. doi: 10.4093/dmj.2016.40.1.22

    [39]

    SHI Y, WANG S, PENG H, et al. Fibroblast Growth Factor 21 Attenuates Vascular Calcification by Alleviating Endoplasmic Reticulum Stress Mediated Apoptosis in Rats[J]. Int J Biol Sci, 2019, 15(1): 138-147. doi: 10.7150/ijbs.28873

    [40]

    ZHU W, WANG C, LIU L, et al. Effects of fibroblast growth factor 21 on cell damage in vitro and atherosclerosis in vivo[J]. Can J Physiol Pharmacol, 2014, 92(11): 927-935. doi: 10.1139/cjpp-2014-0227

    [41]

    LIU S Q, ROBERTS D, KHARITONENKOV A, et al. Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue[J]. Scientific reports, 2013, 3: 2767. doi: 10.1038/srep02767

    [42] 刘雪莲, 谢丽华, 王丽华. 糖尿病合并下肢大血管病变患者血浆FGF-21、SDF-1、Lp(a)水平变化及其临床意义[J]. 临床医学, 2020, 40(4): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-EBED202004027.htm
    [43]

    GIMENO R E, MOLLER D E. FGF21-based pharmacotherapy--potential utility for metabolic disorders[J]. Trends Endocrinol Metab, 2014, 25(6): 303-311. doi: 10.1016/j.tem.2014.03.001

    [44]

    GAICH G, CHIEN J Y, FU H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes[J]. Cell Metab, 2013, 18(3): 333-340. doi: 10.1016/j.cmet.2013.08.005

    [45]

    BERGLUND E D, LI C Y, BINA H A, et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity[J]. Endocrinology, 2009, 150(9): 4084-4093. doi: 10.1210/en.2009-0221

    [46]

    SHI G J, SHI G R, ZHOU J Y, et al. Involvement of growth factors in diabetes mellitus and its complications: A general review[J]. Biomed Pharmacother, 2018, 101: 510-527. doi: 10.1016/j.biopha.2018.02.105

  • 期刊类型引用(1)

    1. 吴晓文,李军,尧国胜,韦凌云,黄高. 不同人工肝治疗在急性肝衰竭治疗中的临床疗效对比研究. 智慧健康. 2024(25): 96-98+101 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  360
  • HTML全文浏览量:  128
  • PDF下载量:  23
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-03-05
  • 网络出版日期:  2021-09-27
  • 发布日期:  2021-08-14

目录

/

返回文章
返回
x 关闭 永久关闭