Research progress of B cells in pathogenesis and treatment of primary Sjögren's syndrome
-
摘要: 原发性干燥综合征(pSS)是一种全身性自身免疫性疾病,临床以免疫介导的腺体受累导致眼干、口干为主要特征,可伴有疲劳、骨骼肌疼痛和其他全身症状。B淋巴细胞活化是pSS的一个主要特征,B细胞活化因子(BAFF)水平升高与疾病活动度、异位生发中心形成和血清自身抗体水平相关。目前针对pSS的治疗方法非常有限,基本为致力于改善干燥症状,故需逐渐探索与pSS相关的特异性免疫疗法。作者对改善病情抗风湿药(DMARDs)调节B细胞治疗pSS的现状进行综述并展望。Abstract: Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by dry eyes and dry mouth due to immune-mediated glandular involvement, patients with pSS may accompany by fatigue, skeletal muscle pain, and other systemic symptoms. B lymphocyte activation is a major feature of pSS, and elevated level of B-cell activating factor (BAFF) is associated with disease activity, ectopic germinal center formation, and serum autoantibody levels. Currently, the treatment methods for pSS are very limited, mainly focusing on improving dry symptoms, so it is necessary to gradually explore specific immunotherapy related to pSS. In this paper, the status quo of disease modifying antirheumatic drugs (DMARDs) regulating B cell therapy for PSS was reviewed and prospected.
-
Keywords:
- primary Sjögren's syndrome /
- B cell /
- B-cell activating factor /
- targeted therapy /
- antibody
-
脓毒症属于宿主对感染产生调节失常性反应,在细菌、真菌感染后,机体固有免疫将对病原体迅速产生应答,一但非特异性免疫作用未能在早期控制感染,将代偿性过度活化免疫细胞及相关细胞因子、补体成分,造成正常组织细胞损伤[1], 异常激活凝血系统,生理性抗凝作用受到抑制,可继发循环功能障碍与弥散性血管内凝血[2], 加重脓毒症病情。作为临床重症监护单元(ICU)收治对象的重要组成部分,随着抗生素滥用影响的不断扩大,全球范围内脓毒症患病率以9%的年均增幅上涨,每年有数以百万计的新发脓毒症患者面临死亡[3]。尽管如此,由于不同区域脓毒症患者存在流行病学、文化环境、经济水平及一般情况的差异,既往针对脓毒症死亡患者的研究结论并不完全一致[4]。本研究对本院脓毒症患者28 d内死亡的相关危险因素进行分析,现将结果报告如下。
1. 资料与方法
1.1 一般资料
回顾性分析2016年4月—2019年3月本院收治的168例脓毒症患者临床资料。纳入标准: ①存在明确感染,且临床症状、化验结果均符合脓毒症相关诊断标准[5]; ②年龄≥18岁; ③临床资料完整。排除标准: ①收入ICU后48 h内死亡或转出; ②诊断出自身免疫性疾病、免疫缺陷性疾病或终末期肝脏、肾脏疾病; ③ 3个月内服用免疫调节剂或化疗药物; ④妊娠期或哺乳期妇女。根据确诊后28 d内存活情况分为死亡组(n=71)与存活组(n=97)。
1.2 研究方法
回顾入选患者病例资料,分别录入以下项目作为统计变量: ①基线资料,包括年龄、性别、收入ICU危重程度[急性生理与慢性健康Ⅱ(APACHEⅡ)评分][6]、合并症; ②血清生化指标(以收入ICU时所测为研究内容),包括白蛋白(Alb)、C反应蛋白(CRP)、葡萄糖(Glu)、乳酸(Lac)、丙氨酸氨基转移酶(ALT)、肌酐(SCr)、D-二聚体(D-D)、维生素D(VitD); ③干预措施,包括机械通气、血液净化等。
1.3 统计学处理
将所得数据资料录入SPSS 20.0进行处理,连续变量通过Kolmogorov-Smirnov正态性检验均已证实近似服从正态分布,故以平均值±标准差描述,组间单因素比较采用独立样本t检验; 分类变量以[n(%)]描述,组间单因素比较采用Pearson卡方检验; 将检验所得有统计学意义的单因素纳入Logistic多因素回归模型去除混杂偏倚,回归方法选择“向前Wald”, 筛选出有意义的变量作为独立影响因素; 将独立影响因素数据录入Medcalc 18.2绘制受试者工作特征(ROC)曲线以探讨对终点事件的预测效能,获取曲线下面积(AUC)、置信区间(95%CI)、最大Youden指数及cut-off值(仅限其中的连续变量)。
2. 结果
2.1 2组脓毒症患者临床资料比较
死亡组年龄、APACHEⅡ评分、恶性肿瘤率、心力衰竭率、休克率、机械通气率、血液净化率及血清CRP、Lac、ALT、SCr、D-D水平均显著大于存活组,而血清VitD水平则显著低于存活组(P < 0.05或P < 0.01), 见表 1。
表 1 死亡组与存活组患者临床资料比较(x±s)[n(%)]变量 死亡组(n=71) 存活组(n=97) 年龄/岁 69.49±12.74 62.68±13.95** 性别 男 39(54.93) 58(59.79) 女 32(45.07) 39(40.21) APACHEⅡ评分/分 26.13±6.87 20.64±6.38** 合并症 恶性肿瘤 11(15.49) 6(6.19)* 呼吸衰竭 12(16.90) 12(12.37) 心力衰竭 20(28.17) 9(9.28)** 休克 39(54.93) 28(28.87)** 血清生化指标 Alb/(g/L) 28.69±7.29 30.84±7.94 CRP/(mg/L) 47.76±11.47 39.54±13.17** Glu/(mmol/L) 7.52±1.86 7.27±2.04 Lac/(mmol/L) 3.35±0.82 2.74±0.54** ALT/(U/L) 32.19±9.91 28.26±8.63** SCr/(mmol/L) 107.58±26.45 85.92±19.79** D-D/(mg/L) 5.06±1.53 3.93±1.30** VitD/(ng/L) 26.48±7.81 34.42±9.25** 干预措施 机械通气 68(95.77) 72(74.23)** 血液净化 50(70.42) 51(52.58)* APACHEⅡ评分: 急性生理与慢性健康Ⅱ评分; Alb: 白蛋白; CRP: C反应蛋白; Glu: 葡萄糖; Lac: 乳酸; ALT: 丙氨酸氨基转移酶; SCr: 肌酐; D-D: D-二聚体; VitD: 维生素D。与死亡组比较, *P < 0.05, **P < 0.01。 2.2 多因素回归分析
多因素Logistic回归分析结果显示,年龄、APACHEⅡ评分、休克、CRP、Lac均是脓毒症患者28 d死亡的独立危险因素(OR > 1, P < 0.05), 而VitD是其独立保护因素(OR < 1, P < 0.05), 见表 2。
表 2 脓毒症患者28d死亡的多因素的Logistic回归模型变量 β S. E Wald·χ2 P OR 95%CI 年龄/岁 0.251 0.113 4.934 0.028 1.285 1.030~1.604 APACHEⅡ评分/分 1.442 0.459 9.870 0.002 4.229 1.720~10.398 休克 2.727 0.861 10.031 0.002 15.287 2.828~82.645 CRP/(mg/L) 1.146 0.318 12.987 <0.001 3.146 1.687~5.867 Lac/(mmol/L) 1.272 0.465 7.483 0.007 3.548 1.434~8.876 VitD/(ng/L) -1.387 0.498 7.757 0.006 0.250 0.094~0.663 APACHEⅡ评分: 急性生理与慢性健康Ⅱ评分; CRP: C反应蛋白; Lac: 乳酸; VitD: 维生素D。 2.3 独立危险因素变量的ROC曲线
年龄、APACHEⅡ评分、休克、CRP、Lac、VitD预测脓毒症患者28 d死亡的ROC曲线AUC分别为0.645、0.732、0.630、0.676、0.707、0.738, 均显著大于参考线AUC(P < 0.05), 其中属于连续变量的年龄、APACHEⅡ评分、CRP、Lac、VitD的cut-off值分别为59岁、24分、37.99 mg/L、3.31 mmol/L、29.73 ng/L, 见图 1、表 3。
表 3 ROC曲线相关参数变量 AUC 95%CI 最大Youden指数 cut-off值 年龄/岁 0.645 0.567~0.717 0.313 59岁 APACHEⅡ评分/分 0.732 0.659~0.798 0.393 24分 休克 0.630 0.553~0.703 0.261 — CRP/(mg/L) 0.676 0.599~0.746 0.287 37.99 Lac/(mmol/L) 0.707 0.632~0.775 0.373 3.31 VitD/(ng/L) 0.738 0.665~0.803 0.377 29.73 3. 讨论
脓毒症好发于各年龄段人群,老年人由于存在免疫功能低下、并发症较多、营养不良、院前身体状态较差等生理特点,其脓毒症易感体质较为突出[7]。由于老年脓毒症患者与年轻患者在治疗策略上并不具备特殊性,疾病管理趋于一致,其预后治疗结局与生活质量往往较年轻患者更差[8], 尤其伴有心力衰竭、糖尿病、脑血管或外周血管疾病的老年患者,身体对治疗措施的反应更不明确,并已通过Meta分析指出该类患者具有更高的ICU入住率、住院时间与病死率[9]。
休克属于各种强烈致病因素作用于机体后致循环功能急剧减退,而导致的组织器官微循环灌注严重不足,生命器官机能、代谢障碍性全身性危重化病理过程[10]。据相关文献[11]报道,脓毒性休克发生早期重要器官缺血、缺氧尚不十分严重,整体需氧与摄氧平衡还能基本维持,医护人员需及时对其病情变化做出准确判断,第一时间采取应对措施,增加其抢救成功率。本研究结果显示,年龄≥59岁、APACHEⅡ评分≥24分、发生休克均是导致脓毒症患者28 d内死亡的独立危险因素,这表明年龄越大或病情越严重的脓毒症患者死亡风险越高,临床需在收治患者时及早通过APACHEⅡ对其病情进行评价,观察是否存在休克相关体征变化,并以此为据采取有效干预措施,积极改善患者预后。
CRP是一种肝脏合成的急性时相反应蛋白,能通过激活补体系统与淋巴细胞发生特异性结合,限制淋巴细胞过度活化效应,并提高巨噬细胞吞噬活性,代偿性减少炎症损伤对机体的损害作用,通常炎症反应越剧烈,其表达水平越高[12]。既往研究[13]也通过测定其水平来鉴别脓毒性休克、脓毒症、普通感染患者及健康受试者,其诊断ROC曲线AUC可达0.745, 较白细胞计数(WBC)的0.698更为理想,可作为脓毒症病情评估的血清标志物。本研究中,血清CRP≥37.99 mg/L被证实是引起脓毒症患者28 d内死亡的高危因素,提示早期检测CRP能反映出脓毒症患者病情演进阶段,从而指导临床干预策略的制定与实施。
Lac是人体组织在缺氧情况下产生的无氧代谢产物,是器官功能障碍的标志物之一,目前已在脓毒症与脓毒性休克液体复苏治疗中作为常用的疗效描述性动态观测指标[14]。部分研究[15]指出,脓毒症患者继发Lac中度升高或高乳酸血症并不单纯由组织低灌注、低氧状态所致,还可能由心脏骤停、酮症酸中毒或恶性肿瘤等原因引起,其水平高于4 mmol/L提示脓毒症患者院内死亡的风险提高5.53倍。本研究也通过Logistic多因素回归分析发现,血清Lac≥3.31 mmol/L是导致脓毒症患者28 d内死亡的独立危险因素,这说明积极监测脓毒症患者Lac水平变化有助于指导其早期液体复苏与抗生素治疗思路,并实现早期识别与分层管理。
VitD缺乏与病毒、细菌感染的相关性已被临床所广泛认同,但国内研究对脓毒症病情影响的研究还停留在新生儿范畴,低VitD脓毒症患儿预后与免疫功能均不能达到预期理想水平[16]。有国外学者[17]指出,危急重症患者由于缺乏VitD,其甲状旁腺亢进明显,且由于机体缺少通过VitD抑制炎症因子表达的机制,抗生素治疗耐药性更为突出,住院时间有所延长,也更倾向于获得不良治疗结局[18-19]。本研究发现,血清VitD水平≥29.73 ng/L可作为脓毒症患者28 d内死亡的独立保护因素[20],这提示确保患者住ICU期间摄入充足的VitD能保障其免疫功能恢复效率与抗感染治疗有效性,促进病情转归,降低其近期死亡率。
综上所述,脓毒症患者28 d死亡率受年龄、APACHEⅡ评分、休克、CRP、Lac、VitD等因素独立影响,临床可围绕上述变量开展早期病情评估、相关指标监测及干预措施优化。
-
[1] MARIETTE X, CRISWELL L A. Primary Sjögren's syndrome[J]. N Engl J Med, 2018, 378(10): 931-939. doi: 10.1056/NEJMcp1702514
[2] NOCTURNE G, MARIETTE X. Advances in understanding the pathogenesis of primary Sjögren's syndrome[J]. Nat Rev Rheumatol, 2013, 9(9): 544-556. doi: 10.1038/nrrheum.2013.110
[3] RAMOS-CASALS M, BRITO-ZERÓN P, BOMBARDIERI S, et al. EULAR recommendations for the management of Sjögren's syndrome with topical and systemic therapies[J]. Ann Rheum Dis, 2020, 79(1): 3-18. doi: 10.1136/annrheumdis-2019-216114
[4] CHRISTODOULOU M I, KAPSOGEORGOU E K, MOUTSOPOULOS H M. Characteristics of the minor salivary gland infiltrates in Sjögren's syndrome[J]. J Autoimmun, 2010, 34(4): 400-407. doi: 10.1016/j.jaut.2009.10.004
[5] PUGA I, COLS M, BARRA C M, et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen[J]. Nat Immunol, 2012, 13(2): 170-180. doi: 10.1038/ni.2194
[6] BARCELOS F, MARTINS C, PAPOILA A, et al. Association between memory B-cells and clinical and immunological features of primary Sjögren's syndrome and Sicca patients[J]. Rheumatol Int, 2018, 38(6): 1063-1073. doi: 10.1007/s00296-018-4018-0
[7] WANG R X, YU C R, DAMBUZA I M, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease[J]. Nat Med, 2014, 20(6): 633-641. doi: 10.1038/nm.3554
[8] GREEN N M, MARSHAK-ROTHSTEIN A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity[J]. Semin Immunol, 2011, 23(2): 106-112. doi: 10.1016/j.smim.2011.01.016
[9] LAVIE F, MICELI-RICHARD C, ITTAH M, et al. B-cell activating factor of the tumour necrosis factor family expression in blood monocytes and T cells from patients with primary Sjögren's syndrome[J]. Scand J Immunol, 2008, 67(2): 185-192. doi: 10.1111/j.1365-3083.2007.02049.x
[10] SCHNEIDER P, TSCHOPP J. BAFF and the regulation of B cell survival[J]. Immunol Lett, 2003, 88(1): 57-62. doi: 10.1016/S0165-2478(03)00050-6
[11] KAMPA M, NOTAS G, STATHOPOULOS E N, et al. The TNFSF members APRIL and BAFF and their receptors TACI, BCMA, and BAFFR in oncology, with a special focus in breast cancer[J]. Front Oncol, 2020, 10: 827. doi: 10.3389/fonc.2020.00827
[12] GROOM J, KALLED S L, CUTLER A H, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren's syndrome[J]. J Clin Invest, 2002, 109(1): 59-68. doi: 10.1172/JCI0214121
[13] MARIETTE X, ROUX S, ZHANG J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren's syndrome[J]. Ann Rheum Dis, 2003, 62(2): 168-171. doi: 10.1136/ard.62.2.168
[14] LAVIE F, MICELI-RICHARD C, QUILLARD J, et al. Expression of BAFF(BLyS) in T cells infiltrating labial salivary glands from patients with Sjögren's syndrome[J]. J Pathol, 2004, 202(4): 496-502. doi: 10.1002/path.1533
[15] YOSHIMOTO K, SUZUKI K, TAKEI E, et al. Elevated expression of BAFF receptor, BR3, on monocytes correlates with B cell activation and clinical features of patients with primary Sjögren's syndrome[J]. Arthritis Res Ther, 2020, 22(1): 157. doi: 10.1186/s13075-020-02249-1
[16] QUARTUCCIO L, SALVIN S, FABRIS M, et al. BLyS upregulation in Sjögren's syndrome associated with lymphoproliferative disorders, higher ESSDAI score and B-cell clonal expansion in the salivary glands[J]. Rheumatology: Oxford, 2013, 52(2): 276-281. doi: 10.1093/rheumatology/kes180
[17] DASS S, BOWMAN S J, VITAL E M, et al. Reduction of fatigue in Sjögren's syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study[J]. Ann Rheum Dis, 2008, 67(11): 1541-1544. doi: 10.1136/ard.2007.083865
[18] MEIJER J M, MEINERS P M, VISSINK A, et al. Effectiveness of rituximab treatment in primary Sjögren's syndrome: a randomized, double-blind, placebo-controlled trial[J]. Arthritis Rheum, 2010, 62(4): 960-968. doi: 10.1002/art.27314
[19] CARUBBI F, CIPRIANI P, MARRELLI A, et al. Efficacy and safety of rituximab treatment in early primary Sjögren's syndrome: a prospective, multi-center, follow-up study[J]. Arthritis Res Ther, 2013, 15(5): R172. doi: 10.1186/ar4359
[20] GOTTENBERG J E, CINQUETTI G, LARROCHE C, et al. Efficacy of rituximab in systemic manifestations of primary Sjögren's syndrome: results in 78 patients of the AutoImmune and Rituximab registry[J]. Ann Rheum Dis, 2013, 72(6): 1026-1031. doi: 10.1136/annrheumdis-2012-202293
[21] HASEGAWA J, HAYAMI N, HOSHINO J, et al. Cryoglobulinemic vasculitis with primary Sjögren's syndrome: a case report[J]. Mod Rheumatol, 2018, 28(3): 570-574. doi: 10.3109/14397595.2015.1128870
[22] DEVAUCHELLE-PENSEC V, MARIETTE X, JOUSSE-JOULIN S, et al. Treatment of primary Sjögren's syndrome with rituximab: a randomized trial[J]. Ann Intern Med, 2014, 160(4): 233-242. http://smartsearch.nstl.gov.cn/paper_detail.html?id=db9a3617d0fe2d931ca1a54e61f9b8d7
[23] BOOTSMA H, KROESE F G M, VISSINK A. Editorial: rituximab in the treatment of Sjögren's syndrome: is it the right or wrong drug[J]. Arthritis Rheumatol, 2017, 69(7): 1346-1349. doi: 10.1002/art.40095
[24] CORNEC D, COSTA S, DEVAUCHELLE-PENSEC V, et al. Blood and salivary-gland BAFF-driven B-cell hyperactivity is associated to rituximab inefficacy in primary Sjögren's syndrome[J]. J Autoimmun, 2016, 67: 102-110. doi: 10.1016/j.jaut.2015.11.002
[25] MARIETTE X, SEROR R, QUARTUCCIO L, et al. Efficacy and safety of belimumab in primary Sjögren's syndrome: results of the BELISS open-label phase Ⅱ study[J]. Ann Rheum Dis, 2015, 74(3): 526-531. doi: 10.1136/annrheumdis-2013-203991
[26] QUARTUCCIO L, SALVIN S, CORAZZA L, et al. Efficacy of belimumab and targeting of rheumatoid factor-positive B-cell expansion in Sjögren's syndrome: follow-up after the end of the phase Ⅱ open-label BELISS study[J]. Clin Exp Rheumatol, 2016, 34(2): 311-314. http://smartsearch.nstl.gov.cn/paper_detail.html?id=abf10f5df1c3a2fde8589c36ac82b96f
[27] DÖRNER T, POSCH M G, LI Y, et al. Treatment of primary Sjögren's syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity[J]. Ann Rheum Dis, 2019, 78(5): 641-647. doi: 10.1136/annrheumdis-2018-214720
[28] SIEGER N, FLEISCHER S J, MEI H E, et al. CD22 ligation inhibits downstream B cell receptor signaling and Ca2+ flux upon activation[J]. Arthritis Rheum, 2013, 65(3): 770-779. doi: 10.1002/art.37818
[29] STEINFELD S D, TANT L, BURMESTER G R, et al. Epratuzumab (humanised anti-CD22 antibody) in primary Sjögren's syndrome: an open-label phase Ⅰ/Ⅱ study[J]. Arthritis Res Ther, 2006, 8(4): R129. doi: 10.1186/ar2018
[30] GOTTENBERG J E, DÖRNER T, BOOTSMA H, et al. Efficacy of epratuzumab, an anti-CD22 monoclonal IgG antibody, in systemic lupus erythematosus patients with associated Sjögren's syndrome: post hoc analyses from the EMBODY trials[J]. Arthritis Rheumatol, 2018, 70(5): 763-773. doi: 10.1002/art.40425
[31] ALEVIZOS I, ZHENG C, COTRIM A P, et al. Late responses to adenoviral-mediated transfer of the aquaporin-1 gene for radiation-induced salivary hypofunction[J]. Gene Ther, 2017, 24(3): 176-186. doi: 10.1038/gt.2016.87
[32] LAI Z, YIN H, CABRERA-PÉREZ J, et al. Aquaporin gene therapy corrects Sjögren's syndrome phenotype in mice[J]. PNAS, 2016, 113(20): 5694-5699. doi: 10.1073/pnas.1601992113
[33] YIN H, CABRERA-PEREZ J, LAI Z, et al. Association of bone morphogenetic protein 6 with exocrine gland dysfunction in patients with Sjögren's syndrome and in mice[J]. Arthritis Rheum, 2013, 65(12): 3228-3238. http://www.ncbi.nlm.nih.gov/pubmed/23982860
[34] XU J, SU Y, HU L, et al. Effect of bone morphogenetic protein 6 on immunomodulatory functions of salivary gland-derived mesenchymal stem cells in Sjögren's syndrome[J]. Stem Cells Dev, 2018, 27(22): 1540-1548. doi: 10.1089/scd.2017.0161
[35] YIN H, KALRA L, LAI Z, et al. Inhibition of bone morphogenetic protein 6 receptors ameliorates Sjögren's syndrome in mice[J]. Sci Rep, 2020, 10(1): 2967. doi: 10.1038/s41598-020-59443-z
[36] CORNETH O B J, VERSTAPPEN G M P, PAULISSEN S M J, et al. Enhanced bruton's tyrosine kinase activity in peripheral blood B lymphocytes from patients with autoimmune disease[J]. Arthritis Rheumatol, 2017, 69(6): 1313-1324. doi: 10.1002/art.40059
[37] MUNAKATA W, ANDO K, HATAKE K, et al. Phase Ⅰ study of tirabrutinib (ONO-4059/GS-4059) in patients with relapsed or refractory B-cell malignancies in Japan[J]. Cancer Sci, 2019, 110(5): 1686-1694. doi: 10.1111/cas.13983
[38] NAYAR S, CAMPOS J, SMITH C G, et al. Phosphatidylinositol 3-kinase delta pathway: a novel therapeutic target for Sjögren's syndrome[J]. Ann Rheum Dis, 2019, 78(2): 249-260. http://ard.bmj.com/content/78/2/249.full
[39] ZENG M, SZYMCZAK M, AHUJA M, et al. Restoration of CFTR activity in ducts rescues acinar cell function and reduces inflammation in pancreatic and salivary glands of mice[J]. Gastroenterology, 2017, 153(4): 1148-1159. http://www.ncbi.nlm.nih.gov/pubmed/28634110/
[40] SINTES J, VIDAL-LALIENA M, ROMERO X, et al. Characterization of mouse CD229(Ly9), a leukocyte cell surface molecule of the CD150(SLAM) family[J]. Tissue Antigens, 2007, 70(5): 355-362. doi: 10.1111/j.1399-0039.2007.00909.x
[41] BRALEY-MULLEN H, YU S. NOD. H-2h4 mice: an important and underutilized animal model of autoimmune thyroiditis and Sjögren's syndrome[J]. Adv Immunol, 2015, 126: 1-43.
-
期刊类型引用(24)
1. 张媛昊. 分析吸入用布地奈德混悬液联合硫酸特布他林雾化吸入用溶液治疗小儿毛细支气管炎的临床疗效及对血清IL-4、IL-6、IL-8、TNF-α、IFN-γ的影响. 黑龙江医药. 2025(01): 33-37 . 百度学术
2. 木国法,李旭,龚应玲. 白细胞介素-4、瘦素、趋化素与肥胖型哮喘患儿病情程度的关系及预测哮喘控制的价值. 实用临床医药杂志. 2025(03): 108-113 . 本站查看
3. 尹莉娜. 小儿推拿疗法联合药物雾化治疗小儿慢性持续期支气管哮喘护理研究. 航空航天医学杂志. 2024(02): 233-235 . 百度学术
4. 薛绍芬,田英,陈雅. 糜蛋白酶联合特布他林雾化治疗支气管哮喘的临床效果. 实用临床医学. 2024(02): 14-18 . 百度学术
5. 何茸茸,徐莉,刘晶晶. 特布他林联合布地奈德雾化吸入对小儿哮喘治疗的效果分析. 智慧健康. 2024(11): 77-79 . 百度学术
6. 武文会,刘琳,耿贝贝. 氨茶碱联合特布他林与沙丁胺醇对老年支气管哮喘的治疗作用. 华夏医学. 2024(04): 185-190 . 百度学术
7. 李爱平,刘敏. 布地奈德联合特布他林雾化吸入治疗小儿支气管炎的疗效及作用机制分析. 临床研究. 2024(09): 58-61 . 百度学术
8. 巫小燕,邓暄辉. 特布他林联合布地奈德治疗支气管肺炎患儿的效果及对临床症状的影响. 医学信息. 2024(20): 131-134 . 百度学术
9. 谷志勇,刘一波. 血清CKLF-1、COX-2水平对支气管哮喘患儿临床分型的价值. 国际检验医学杂志. 2023(04): 446-449 . 百度学术
10. 常婷,杜秋燕. 特布他林结合布地奈德雾化吸入治疗小儿哮喘的临床效果. 临床医学研究与实践. 2023(12): 47-50 . 百度学术
11. 王萍,罗慧,宋春莉,陈立波. 不同剂量布地奈德对儿童支气管哮喘疗效和炎症抑制的影响. 中南医学科学杂志. 2023(05): 737-740 . 百度学术
12. 闫雪. 氨溴索联合特布他林、布地奈德治疗小儿支气管肺炎的临床效果. 妇儿健康导刊. 2023(01): 132-134 . 百度学术
13. 黄莹,郑秀琴,陈岚. 特步他林并布地奈德治疗对急性支气管哮喘患者IL-5、IL-10及TNF-α的影响. 分子诊断与治疗杂志. 2022(01): 161-164 . 百度学术
14. 赵日婵,梁方华,严有敏. 布地奈德与硫酸特布他林雾化吸入对小儿哮喘患儿血清变态反应的影响. 中国医药科学. 2022(04): 88-91 . 百度学术
15. 凌媛,陈列. 特布他林联合孟鲁司特钠治疗支气管哮喘患者的临床疗效. 临床合理用药杂志. 2022(09): 36-38 . 百度学术
16. 张洪琼,闫天凌,钱军. 特布他林、孟鲁司特钠联合治疗支气管哮喘的临床效果及呼吸力学指标观察. 解放军医药杂志. 2022(06): 96-99 . 百度学术
17. 罗媛珍,戴建华. 喘可治注射液联合布地奈德混悬液雾化治疗小儿支气管哮喘的临床观察. 现代诊断与治疗. 2022(08): 1145-1147 . 百度学术
18. 余准,黄锴川,林凯. 特布他林与异丙托溴铵雾化治疗支气管哮喘中重度急性发作的疗效及对肺功能的影响. 中国处方药. 2022(07): 114-116 . 百度学术
19. 车蓬丽,崔文兰. 孟鲁司特钠联合沙美特罗替卡松治疗小儿支气管哮喘的临床效果及对免疫功能、STAT1、IRF1的影响. 临床医学研究与实践. 2022(28): 77-80 . 百度学术
20. 齐莎莎,张国伟,孟凡威,付晓梅,张宏. 细菌溶解产物胶囊联合扎鲁司特、布地奈德气雾剂治疗支气管哮喘缓解期患儿的效果观察. 医学理论与实践. 2022(23): 4057-4059 . 百度学术
21. 乐丽君. 穴位贴敷联合雾化吸入治疗小儿喘息临床分析. 湖北理工学院学报. 2021(05): 55-59 . 百度学术
22. 刁秀伟,陈勇. 布地奈德联合盐酸氨溴索雾化吸入治疗小儿支气管肺炎的临床疗效. 江西医药. 2021(09): 1465-1467 . 百度学术
23. 丰红梅,赵梦. 布地奈德雾化吸入联合家庭教育对儿童哮喘的临床疗效观察. 中国妇幼保健. 2021(23): 5454-5458 . 百度学术
24. 赵芳,刘振国,常瑛,葛莉,李芳. 肺热清颗粒联用糖皮质激素对小儿支气管哮喘氧化/抗氧化失衡的影响. 湖南师范大学学报(医学版). 2021(06): 171-174 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 480
- HTML全文浏览量: 456
- PDF下载量: 63
- 被引次数: 24