嗜酸性粒细胞型慢性阻塞性肺疾病发病机制及个体化治疗的研究进展

王亚林, 裔传华, 朱慕云

王亚林, 裔传华, 朱慕云. 嗜酸性粒细胞型慢性阻塞性肺疾病发病机制及个体化治疗的研究进展[J]. 实用临床医药杂志, 2021, 25(18): 128-132. DOI: 10.7619/jcmp.20211345
引用本文: 王亚林, 裔传华, 朱慕云. 嗜酸性粒细胞型慢性阻塞性肺疾病发病机制及个体化治疗的研究进展[J]. 实用临床医药杂志, 2021, 25(18): 128-132. DOI: 10.7619/jcmp.20211345
WANG Yalin, YI Chuanhua, ZHU Muyun. Research progress on pathogenesis and individualized treatment in patients with eosinophilic chronic obstructive pulmonary disease[J]. Journal of Clinical Medicine in Practice, 2021, 25(18): 128-132. DOI: 10.7619/jcmp.20211345
Citation: WANG Yalin, YI Chuanhua, ZHU Muyun. Research progress on pathogenesis and individualized treatment in patients with eosinophilic chronic obstructive pulmonary disease[J]. Journal of Clinical Medicine in Practice, 2021, 25(18): 128-132. DOI: 10.7619/jcmp.20211345

嗜酸性粒细胞型慢性阻塞性肺疾病发病机制及个体化治疗的研究进展

详细信息
    通讯作者:

    朱慕云, E-mail: yzszmy@163.com

  • 中图分类号: R441.8;R392.11

Research progress on pathogenesis and individualized treatment in patients with eosinophilic chronic obstructive pulmonary disease

  • 摘要: 近年来,嗜酸性粒细胞(EOS)在慢性阻塞性肺疾病(COPD)治疗中备受关注。部分COPD患者的气道炎症反应和全身炎症反应较为活跃,循环血EOS升高,并涉及多种炎性标志物。目前,EOS阈值与COPD患者临床治疗的相关性仍存在争议,但EOS计数已作为生物标志物应用于临床,特别是在COPD患者吸入糖皮质激素后,在改善预后以及防止病情恶化方面获益匪浅。此外,针对嗜酸性炎症的多种治疗方法已经或正在研究开发中,包括针对白细胞介素、趋化因子等炎症介质及其受体的单克隆抗体等。本文对EOS的生物学特征、在COPD发病机制中的作用以及作为生物标志物在个体化治疗决策方面的价值综述如下。
    Abstract: In recent years, eosinophil (EOS) has attracted much attention in the treatment of chronic obstructive pulmonary disease (COPD). Some COPD patients are observed with active airway inflammation and systemic inflammation, increase of circulating EOS, and a variety of involved inflammatory markers. At present, the relationship between EOS threshold and clinical treatment of COPD is still controversial, but EOS count has been used as a biomarker in clinical practice, especially in COPD patients gaining benefits of improving the prognosis and preventing the deterioration of the disease after inhaling corticosteroids. In addition, a variety of treatment methods for eosinophilic inflammation have been or are being researched and developed, including monoclonal antibodies against inflammatory mediators such as interleukin, chemokines and their receptors. This paper reviewed the biological characteristics of EOS, its role in the pathogenesis of COPD and its value as a biomarker in decision-making of individualized treatment.
  • 急性缺血性脑卒中(AIS)是脑组织急性缺血、缺氧导致的神经功能障碍性疾病,占脑卒中的60%~80%, 具有较高的致残率和致死率,严重威胁患者的生命健康[1]。早期诊断并及时治疗能够显著改善患者预后,有效降低致残率和病死率。目前,神经影像学技术如颅脑CT、磁共振成像(MRI)技术已被广泛应用于临床缺血性脑卒中的诊断,但医疗成本相对较高,且影像学检查手段的准确度依赖于患者既定症状的形成,故CT与MRI仍具有一定的局限性[2]。视频脑电图(VEEG)采用神经电生理技术,不仅能辅助判断脑组织损伤的严重程度,还可以实时监测到急性发病早期的脑电波异常[3-4], 因此对于AIS的早期诊断、疾病进展监测及预后评估均有积极意义。本研究探讨AIS患者的VEEG相关参数与预后的关系,现报告如下。

    将2017年6月—2019年1月本院收治的85例AIS患者作为研究对象,其中男47例,女38例,年龄32~68岁,平均(51.57±5.43)岁。纳入标准: ①符合AIS的诊断标准[5],经颅脑CT及MRI检查确诊; ②初次发病入院,发病时间在72 h内; ③无意识障碍,能够配合各项检查; ④排除有颅脑手术史、癫痫、脑出血、短暂性脑缺血发作及有药物禁忌的患者; ⑤患者及家属均知情同意,并签订知情同意书。收集患者的年龄、性别、病灶分布以及高血压、糖尿病病史等一般临床资料,记录并统计患者入院时美国国立卫生研究院卒中量表(NIHSS)评分。

    所有患者入院后进行抗凝、降纤、扩容等改善微循环的治疗,同时给予脑保护、抗血小板聚集等治疗。治疗过程中采用国产数字化视频脑电监测系统(ZN8000)进行脑电图视频监测。按照国际10/20系统标准放置电极, 16导联单级采样(Fp1、Fp2、F3、F4、F7、F8、C3、C4、T3、T4、T5、T6、P3、P4、O1、O2), 每次监测24 h。分别记录患者在监测期间的各种活动状态、临床表现及脑电活动,将图像与脑电信号同步保存。由2位电生理专业人员完成脑电图图像分析,选取质量较高的信号波段评估VEEG分级及功率谱变化。观察患者病情变化时α波、β波、θ波和δ波的形态变化,按照Lavizzarin分级标准[6]对VEEG进行分级,包括Ⅰ、Ⅱ、Ⅲ、Ⅳ级。VEEG参数包括大脑对称指数(BSI)、波形比率(DTABR), DTABR =(θ波+δ波)/(α波+β波)。

    所有患者接受跟踪随访3个月。采用改良Rankin量表(mRS)评估患者发病3个月的预后情况,共分为7个等级,得分越高提示预后越差。根据mRS评分标准,将患者分为预后良好组和预后不良组,其中mRS评分 < 3分为预后良好。

    采用SPSS 19.0软件分析数据,计量资料采用(x±s)表示,组间比较采用t检验; 计数资料采用χ2检验; 采用Pearson或Spearman相关系数分析参数之间的相关性,以受试者工作曲线(ROC)分析参数的诊断价值, P < 0.05表示差异具有统计学意义。

    85例患者随访过程中,有50例患者预后良好, 35例患者预后不良,其中有7例死亡, 15例患者发生继发性癫痫。入院时基线资料的比较结果显示, 2组的年龄、性别、高血压、糖尿病病史、病灶分布等基线资料差异无统计学意义(P>0.05); 预后不良组的NIHSS评分、BSI和DTABR高于预后良好组,而EEG分级Ⅰ级及Ⅱ级的占比低于预后良好组,差异均有统计学意义(P < 0.05或P < 0.01)。见表 1

    表  1  不同预后患者临床资料及脑电图指标比较(x±s)[n(%)]
    指标 预后良好组(n=50) 预后不良组(n=35) t/χ2 P
    年龄/岁 52.43±6.52 50.30±5.60 1.568 0.121
    性别 26(52.00) 21(60.00) 0.533 0.465
    24(48.00) 14(40.00)
    高血压 27(54.00) 24(68.57) 1.821 0.177
    糖尿病 22(44.00) 19(54.29) 0.872 0.350
    病灶分布 左侧 22(44.00) 12(34.29) 0.850 0.654
    右侧 19(38.00) 15(42.86)
    双侧 9(18.00) 8(22.86)
    NIHSS评分/分 12.10±1.51 12.92±1.69 2.363 0.020
    VEEG分级 Ⅰ级+Ⅱ级 34(68.00) 15(42.86) 5.331 0.021
    Ⅲ级+Ⅳ级 16(32.00) 20(57.14)
    BSI 0.11±0.03 0.14±0.04 4.148 < 0.001
    DTABR 0.71±0.11 0.80±0.12 3.554 0.001
    NIHSS: 美国国立卫生研究院卒中量表; VEEG: 视频脑电图; BSI: 大脑对称指数; DTABR: 波形比率。
    下载: 导出CSV 
    | 显示表格

    相关性分析显示, NIHSS评分与3个月后mRS评分呈显著正相关,同时VEEG分级、BSI和DTABR与NIHSS评分、mRS评分均呈显著正相关(P < 0.01), 见表 2

    表  2  视频脑电参数与NIHSS评分、mRS评分的相关性
    指标 入院NIHSS评分 mRS评分
    r P r P
    入院NIHSS评分 1.000 - 0.354 0.001
    VEEG分级 0.501 < 0.001 0.324 0.002
    BSI 0.287 0.008 0.352 0.001
    DTABR 0.320 0.003 0.495 < 0.001
    NIHSS: 美国国立卫生研究院卒中量表; VEEG: 视频脑电图;
    BSI: 大脑对称指数; DTABR: 波形比率; mRS: 改良Rankin量表。
    下载: 导出CSV 
    | 显示表格

    采用ROC曲线分析NIHSS评分、BSI、DTABR对短期预后结局的预测价值,结果发现NIHSS评分、BSI和DTABR相对于预后结局的曲线下面积(AUC)分别为0.643、0.730、0.734; BSI和DTABR评估预后的敏感性显著高于NIHSS评分; 根据Youden指数获取最佳截断值,NIHSS为13.94分,BSI为0.13, DTABR为0.76。见表 3

    表  3  NIHSS评分、BSI和DTABR预测预后不良的ROC曲线分析结果
    指标 NIHSS评分 BSI DTABR
    AUC 0.643 0.730 0.734
    Youden指数 0.280 0.485 0.511
    分类界值 13.94 0.13 0.76
    敏感性/% 40.00 68.57 77.14
    特异性/% 88.00 80.00 74.00
    NIHSS: 美国国立卫生研究院卒中量表;
    BSI: 大脑对称指数; DTABR: 波形比率; AUC: 曲线下面积。
    下载: 导出CSV 
    | 显示表格

    根据上述最佳截断值将入院NIHSS评分、BSI、DTABR进行二分类,以预后结局为因变量,入院NIHSS评分、VEEG分级、BSI和DTABR为自变量,纳入Logistic多元线性回归分析,结果显示BSI和DTABR是评估脑卒中预后的独立影响因素,BSI和DTABR参数值越高,提示预后不良风险越高。见表 4

    表  4  脑电图参数对卒中不良预后的Logistic回归分析
    指标 BSI DTABR
    β 1.635 1.939
    Wald 9.386 13.192
    OR 5.128 6.952
    95%CI 1.802~14.592 2.442~19.796
    P 0.002 < 0.001
    下载: 导出CSV 
    | 显示表格

    AIS的发病率逐年上升,发病后3个月的死亡和残疾概率高达37.1%[7], 已经成为中老年人的主要致残、致死病因之一。及时评估患者的早期病情,准确预测预后,对于采取有效措施改善预后、制定合理的康复措施等极为重要。目前,临床对AIS的诊断主要依据影像学检查及临床表现,但发病早期影像学特征多不明显,随着神经电生理诊断技术的发展,脑电图在急性脑血管病诊断中的应用越来越广泛。

    研究[8]认为,脑电图比CT、MRI等技术更能反映早期脑功能异常,敏感度更高。脑电图能够捕捉到脑血流中断时间大于30 s的脑电异常变化[4]。普通脑电图记录时间较短,定位准确性有限,而VEEG能够监测在各种刺激和生理状态下长达24 h的连续脑电变化,完整捕捉到神经元异常放电时脑电图的变化,同时通过图像记录患者的临床表现,将患者的脑电变化与临床活动相结合,有效排除伪差,对于缺血性脑卒中等脑血管疾病的精准诊断具有重要意义[9-10]。多项研究[11-13]表明, VEEG能够及时反映患者的脑功能损伤情况,迅速发现病情变化,显著提高癫痫样异常放电的检出率,对于急性脑梗死继发癫痫的临床诊断精确度更高,并根据其波形异常预测癫痫的发作情况,为癫痫的治疗、预后改善提供指导。

    BSI是大脑两侧脑电波功率的相对比值,能够反映脑电活动的对称性,是预测缺血性脑卒中患者预后的良好指标。Myles等[14]研究发现,缺血性脑损伤患者预后良好组和预后不良组的BSI存在显著差异,异常的BSI值提示预后不良。Sheorajpanday等[15]研究发现, BSI对脑卒中患者神经功能恶化分级的诊断准确率达95%,可以独立评估腔隙性脑梗死和后循环梗死的神经功能,预测预后。DTABR指标反映了δ波,θ波、α波和β波的比例、分布及波幅等变化情况,能够预测患者预后的神经功能改善情况[16]。研究[17]发现,DTABR预测腔隙性脑梗死发病7 d的不良预后准确率达83%, 发病6个月后残疾程度及病死率与DTABR独立相关。车春晖等[18]分析发病7 d内的急性脑梗死患者发现, DTABR患侧/健侧比值是评估脑梗死患者预后的良好指标,该比值大于1.59提示预后不良。BSI和DTABR对急性脑梗死数周或数月的预后有较好的预测价值[19], 故BIS和DTABR是较为公认的评估脑功能变化、预测预后的脑电图定量指标。本研究结果发现,预后不良组中BSI和DTABR值显著高于预后良好组,且BSI和DTABR是影响脑卒中预后的独立因素, BSI和DTABR值越高,预后不良的发生风险越高。徐金元等[20]研究提示, EEG分级越高,预后越差,提示EEG监测及分级结果能够很好地反映重症脑血管病的病情严重程度,较好地预测预后。麦晖等[21]研究显示EEG分级越高,脑梗死患者近期预后的生活自理能力越差,提示EEG分级在急性脑梗死后具有一定的预测价值。本研究中,预后良好组的EEG分级Ⅰ级及Ⅱ级占比高于预后不良组,同样提示其与预后有一定相关性。本研究还发现,预后良好组的NIHSS评分显著低于预后不良组,但NIHSS评分并非脑卒中预后的独立影响因素,其评估预后的敏感性低于BSI和DTABR, 这可能和EEG分级、BSI、DTABR均与NIHSS评分呈正相关有关。

    综上所述, VEEG可在床旁观察AIS患者脑功能损伤的早期动态变化,有利于早期迅速发现病情变化,其量化指标BSI、DTABR较NIHSS评分对患者早期预后的诊断更为敏感,可作为预后的独立预测指标,为临床治疗提供参考依据。

  • [1] 陈亚红. 2020年GOLD慢性阻塞性肺疾病诊断、治疗及预防全球策略解读[J]. 中国医学前沿杂志: 电子版, 2019, 11(12): 32-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YXQY201912010.htm
    [2]

    TWOREK D, ANTCZAK A. Eosinophilic COPD—a distinct phenotype of the disease[J]. Adv Respir Med, 2017, 85(5): 271-276. doi: 10.5603/ARM.a2017.0045

    [3]

    NEGEWO N A, MCDONALD V M, BAINES K J, et al. Peripheral blood eosinophils: a surrogate marker for airway eosinophilia in stable COPD[J]. Int J Chron Obstruct Pulmon Dis, 2016, 11: 1495-1504. doi: 10.2147/COPD.S100338

    [4]

    CAO Y, GONG W, ZHANG H, et al. A Comparison of Serum and Sputum Inflammatory Mediator Profiles in Patients with Asthma and COPD[J]. Journal of International Medical Research, 2012, 40(6): 2231-2242. doi: 10.1177/030006051204000621

    [5]

    SINGH D, KOLSUM U, BRIGHTLING C E, et al. Eosinophilic inflammation in COPD: prevalence and clinical characteristics[J]. Eur Respir J, 2014, 44(6): 1697-1700. doi: 10.1183/09031936.00162414

    [6]

    LANDIS S H, SURUKI R, HILTON E, et al. Stability of blood eosinophil count in patients with COPD in the UK clinical practice research datalink[J]. COPD, 2017, 14(4): 382-388. doi: 10.1080/15412555.2017.1313827

    [7]

    GEORGE L, BRIGHTLING C E. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease[J]. Ther Adv Chronic Dis, 2016, 7(1): 34-51. doi: 10.1177/2040622315609251

    [8]

    BAFADHEL M, MCCORMICK M, SAHA S, et al. Profiling of sputum inflammatory mediators in asthma and chronic obstructive pulmonary disease[J]. Respiration, 2012, 83(1): 36-44. doi: 10.1159/000330667

    [9]

    SAETTA M, DI STEFANO A, MAESTRELLI P, et al. Airway eosinophilia in chronic bronchitis during exacerbations[J]. Am J Respir Crit Care Med, 1994, 150(6 Pt 1): 1646-1652.

    [10]

    TASHKIN D P, WECHSLER M E. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2018, 13: 335-349. doi: 10.2147/COPD.S152291

    [11]

    BALZANO M, DE GRANDIS M, VU MANH T P, et al. Nidogen-1 contributes to the interaction network involved in pro-B cell retention in the peri-sinusoidal hematopoietic stem cell niche[J]. Cell Rep, 2019, 26(12): 3257-3271,e8. doi: 10.1016/j.celrep.2019.02.065

    [12]

    KOLSUM U, RAVI A, HITCHEN P, et al. Clinical characteristics of eosinophilic COPD versus COPD patients with a history of asthma[J]. Respir Res, 2017, 18(1): 73. doi: 10.1186/s12931-017-0559-0

    [13]

    PASCOE S, BARNES N, BRUSSELLE G, et al. Blood eosinophils and treatment response with triple and dual combination therapy in chronic obstructive pulmonary disease: analysis of the IMPACT trial[J]. Lancet Respir Med, 2019, 7(9): 745-756. doi: 10.1016/S2213-2600(19)30190-0

    [14]

    KERKHOF M, VOORHAM J, DORINSKY P, et al. Association between COPD exacerbations and lung function decline during maintenance therapy[J]. Thorax, 2020, 75(9): 744-753. doi: 10.1136/thoraxjnl-2019-214457

    [15]

    WHITTAKER H R, MVLLEROVA H, JARVIS D, et al. Inhaled corticosteroids, blood eosinophils, and FEV1 decline in patients with COPD in a large UK primary health care setting[J]. Int J Chron Obstruct Pulmon Dis, 2019, 14: 1063-1073. doi: 10.2147/COPD.S200919

    [16]

    MATHIOUDAKIS A G, BIKOV A, FODEN P, et al. Change in blood eosinophils following treatment with inhaled corticosteroids may predict long-term clinical response in COPD[J]. Eur Respir J, 2020, 55(5): 1902119. doi: 10.1183/13993003.02119-2019

    [17]

    BAFADHEL M, DAVIES L, CALVERLEY P M A, et al. Blood eosinophil guided prednisolone therapy for exacerbations of COPD: a further analysis[J]. Eur Respir J, 2014, 44(3): 789-791. doi: 10.1183/09031936.00062614

    [18]

    BRIGHTLING C, GREENING N. Airway inflammation in COPD: progress to precision medicine[J]. Eur Respir J, 2019, 54(2): 1900651. doi: 10.1183/13993003.00651-2019

    [19]

    MKOROMBINDO T, DRANSFIELD M T. Mepolizumab in the treatment of eosinophilic chronic obstructive pulmonary disease[J]. Int J Chronic Obstr Pulm Dis, 2019, 14: 1779-1787. doi: 10.2147/COPD.S162781

    [20]

    PAVORD I D, CHANEZ P, CRINER G J, et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease[J]. N Engl J Med, 2017, 377(17): 1613-1629. doi: 10.1056/NEJMoa1708208

    [21]

    FERNANDEZ ROMERO G A, BEROS J, CRINER G. Mepolizumab for the prevention of chronic obstructive pulmonary disease exacerbations[J]. Expert Rev Respir Med, 2019, 13(2): 125-132. doi: 10.1080/17476348.2019.1561287

    [22]

    HASSANI M, KOENDERMAN L. Immunological and hematological effects of IL-5(Rα)-targeted therapy: an overview[J]. Allergy, 2018, 73(10): 1979-1988. doi: 10.1111/all.13451

    [23]

    NIXON J, NEWBOLD P, MUSTELIN T, et al. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation[J]. Pharmacol Ther, 2017, 169: 57-77. doi: 10.1016/j.pharmthera.2016.10.016

    [24]

    BRIGHTLING C E, BLEECKER E R, PANETTIERI R J, et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study[J]. Lancet Respir Med, 2014, 2(11): 891-901. doi: 10.1016/S2213-2600(14)70187-0

    [25]

    CRINER G J, CELLI B R, SINGH D, et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies[J]. Lancet Respir Med, 2020, 8(2): 158-170. doi: 10.1016/S2213-2600(19)30338-8

    [26]

    FAJT M L, WENZEL S E. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care[J]. J Allergy Clin Immunol, 2015, 135(2): 299-311. doi: 10.1016/j.jaci.2014.12.1871

    [27]

    KIM S W, RHEE C K, KIM K U, et al. Factors associated with plasma IL-33 levels in patients with chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2017, 12: 395-402. doi: 10.2147/COPD.S120445

    [28]

    DOYLE A D, MUKHERJEE M, LESUER W E, et al. Eosinophil-derived IL-13 promotes emphysema[J]. Eur Respir J, 2019, 53(5): 1801291. doi: 10.1183/13993003.01291-2018

    [29]

    EICKMEIER O, HUEBNER M, HERRMANN E, et al. Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function[J]. Cytokine, 2010, 50(2): 152-157. doi: 10.1016/j.cyto.2010.02.004

    [30]

    PANETTIERI R A Jr, SJÖBRING U, PÉTERFFY A, et al. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials[J]. Lancet Respir Med, 2018, 6(7): 511-525. doi: 10.1016/S2213-2600(18)30184-X

    [31]

    KAUR D, GOMEZ E, DOE C, et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk[J]. Allergy, 2015, 70(5): 556-567. doi: 10.1111/all.12593

    [32]

    SHANG J, ZHAO J L, WU X J, et al. Interleukin-33 promotes inflammatory cytokine production in chronic airway inflammation[J]. Biochimie et Biol Cell, 2015, 93(4): 359-366. doi: 10.1139/bcb-2014-0163

    [33]

    JACKSON D J, MAKRINIOTI H, RANA B M, et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo[J]. Am J Respir Crit Care Med, 2014, 190(12): 1373-1382. doi: 10.1164/rccm.201406-1039OC

    [34]

    UCHIMIZU H, MATSUWAKI Y, KATO M, et al. Eosinophil-derived neurotoxin, elastase, and cytokine profile in effusion from eosinophilic otitis media[J]. Allergol Int, 2015, 64(Suppl): S18-S23.

    [35]

    RABE K F, WATZ H, BARALDO S, et al. Anti-inflammatory effects of roflumilast in chronic obstructive pulmonary disease (ROBERT): a 16-week, randomised, placebo-controlled trial[J]. Lancet Respir Med, 2018, 6(11): 827-836. doi: 10.1016/S2213-2600(18)30331-X

    [36]

    MARTINEZ F J, RABE K F, CALVERLEY P M A, et al. Determinants of response to roflumilast in severe chronic obstructive pulmonary disease. pooled analysis of two randomized trials[J]. Am J Respir Crit Care Med, 2018, 198(10): 1268-1278. doi: 10.1164/rccm.201712-2493OC

    [37] 王红梅, 刘耘充, 郑丹蕾, 等. 血嗜酸性粒细胞作为生物标志物在慢性阻塞性肺疾病中的研究进展[J]. 中华全科医学, 2020, 18(5): 815-820. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202005032.htm
    [38]

    JACKSON D J, KORN S, MATHUR S K, et al. Safety of Eosinophil-Depleting Therapy for Severe, Eosinophilic Asthma: Focus on Benralizumab[J]. Drug Safety, 2020, 43.

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 网络出版日期:  2021-10-19
  • 发布日期:  2021-09-27

目录

/

返回文章
返回
x 关闭 永久关闭