嗜酸性粒细胞型慢性阻塞性肺疾病发病机制及个体化治疗的研究进展

王亚林, 裔传华, 朱慕云

王亚林, 裔传华, 朱慕云. 嗜酸性粒细胞型慢性阻塞性肺疾病发病机制及个体化治疗的研究进展[J]. 实用临床医药杂志, 2021, 25(18): 128-132. DOI: 10.7619/jcmp.20211345
引用本文: 王亚林, 裔传华, 朱慕云. 嗜酸性粒细胞型慢性阻塞性肺疾病发病机制及个体化治疗的研究进展[J]. 实用临床医药杂志, 2021, 25(18): 128-132. DOI: 10.7619/jcmp.20211345
WANG Yalin, YI Chuanhua, ZHU Muyun. Research progress on pathogenesis and individualized treatment in patients with eosinophilic chronic obstructive pulmonary disease[J]. Journal of Clinical Medicine in Practice, 2021, 25(18): 128-132. DOI: 10.7619/jcmp.20211345
Citation: WANG Yalin, YI Chuanhua, ZHU Muyun. Research progress on pathogenesis and individualized treatment in patients with eosinophilic chronic obstructive pulmonary disease[J]. Journal of Clinical Medicine in Practice, 2021, 25(18): 128-132. DOI: 10.7619/jcmp.20211345

嗜酸性粒细胞型慢性阻塞性肺疾病发病机制及个体化治疗的研究进展

详细信息
    通讯作者:

    朱慕云, E-mail: yzszmy@163.com

  • 中图分类号: R441.8;R392.11

Research progress on pathogenesis and individualized treatment in patients with eosinophilic chronic obstructive pulmonary disease

  • 摘要: 近年来,嗜酸性粒细胞(EOS)在慢性阻塞性肺疾病(COPD)治疗中备受关注。部分COPD患者的气道炎症反应和全身炎症反应较为活跃,循环血EOS升高,并涉及多种炎性标志物。目前,EOS阈值与COPD患者临床治疗的相关性仍存在争议,但EOS计数已作为生物标志物应用于临床,特别是在COPD患者吸入糖皮质激素后,在改善预后以及防止病情恶化方面获益匪浅。此外,针对嗜酸性炎症的多种治疗方法已经或正在研究开发中,包括针对白细胞介素、趋化因子等炎症介质及其受体的单克隆抗体等。本文对EOS的生物学特征、在COPD发病机制中的作用以及作为生物标志物在个体化治疗决策方面的价值综述如下。
    Abstract: In recent years, eosinophil (EOS) has attracted much attention in the treatment of chronic obstructive pulmonary disease (COPD). Some COPD patients are observed with active airway inflammation and systemic inflammation, increase of circulating EOS, and a variety of involved inflammatory markers. At present, the relationship between EOS threshold and clinical treatment of COPD is still controversial, but EOS count has been used as a biomarker in clinical practice, especially in COPD patients gaining benefits of improving the prognosis and preventing the deterioration of the disease after inhaling corticosteroids. In addition, a variety of treatment methods for eosinophilic inflammation have been or are being researched and developed, including monoclonal antibodies against inflammatory mediators such as interleukin, chemokines and their receptors. This paper reviewed the biological characteristics of EOS, its role in the pathogenesis of COPD and its value as a biomarker in decision-making of individualized treatment.
  • [1] 陈亚红. 2020年GOLD慢性阻塞性肺疾病诊断、治疗及预防全球策略解读[J]. 中国医学前沿杂志: 电子版, 2019, 11(12): 32-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YXQY201912010.htm
    [2]

    TWOREK D, ANTCZAK A. Eosinophilic COPD—a distinct phenotype of the disease[J]. Adv Respir Med, 2017, 85(5): 271-276. doi: 10.5603/ARM.a2017.0045

    [3]

    NEGEWO N A, MCDONALD V M, BAINES K J, et al. Peripheral blood eosinophils: a surrogate marker for airway eosinophilia in stable COPD[J]. Int J Chron Obstruct Pulmon Dis, 2016, 11: 1495-1504. doi: 10.2147/COPD.S100338

    [4]

    CAO Y, GONG W, ZHANG H, et al. A Comparison of Serum and Sputum Inflammatory Mediator Profiles in Patients with Asthma and COPD[J]. Journal of International Medical Research, 2012, 40(6): 2231-2242. doi: 10.1177/030006051204000621

    [5]

    SINGH D, KOLSUM U, BRIGHTLING C E, et al. Eosinophilic inflammation in COPD: prevalence and clinical characteristics[J]. Eur Respir J, 2014, 44(6): 1697-1700. doi: 10.1183/09031936.00162414

    [6]

    LANDIS S H, SURUKI R, HILTON E, et al. Stability of blood eosinophil count in patients with COPD in the UK clinical practice research datalink[J]. COPD, 2017, 14(4): 382-388. doi: 10.1080/15412555.2017.1313827

    [7]

    GEORGE L, BRIGHTLING C E. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease[J]. Ther Adv Chronic Dis, 2016, 7(1): 34-51. doi: 10.1177/2040622315609251

    [8]

    BAFADHEL M, MCCORMICK M, SAHA S, et al. Profiling of sputum inflammatory mediators in asthma and chronic obstructive pulmonary disease[J]. Respiration, 2012, 83(1): 36-44. doi: 10.1159/000330667

    [9]

    SAETTA M, DI STEFANO A, MAESTRELLI P, et al. Airway eosinophilia in chronic bronchitis during exacerbations[J]. Am J Respir Crit Care Med, 1994, 150(6 Pt 1): 1646-1652.

    [10]

    TASHKIN D P, WECHSLER M E. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2018, 13: 335-349. doi: 10.2147/COPD.S152291

    [11]

    BALZANO M, DE GRANDIS M, VU MANH T P, et al. Nidogen-1 contributes to the interaction network involved in pro-B cell retention in the peri-sinusoidal hematopoietic stem cell niche[J]. Cell Rep, 2019, 26(12): 3257-3271,e8. doi: 10.1016/j.celrep.2019.02.065

    [12]

    KOLSUM U, RAVI A, HITCHEN P, et al. Clinical characteristics of eosinophilic COPD versus COPD patients with a history of asthma[J]. Respir Res, 2017, 18(1): 73. doi: 10.1186/s12931-017-0559-0

    [13]

    PASCOE S, BARNES N, BRUSSELLE G, et al. Blood eosinophils and treatment response with triple and dual combination therapy in chronic obstructive pulmonary disease: analysis of the IMPACT trial[J]. Lancet Respir Med, 2019, 7(9): 745-756. doi: 10.1016/S2213-2600(19)30190-0

    [14]

    KERKHOF M, VOORHAM J, DORINSKY P, et al. Association between COPD exacerbations and lung function decline during maintenance therapy[J]. Thorax, 2020, 75(9): 744-753. doi: 10.1136/thoraxjnl-2019-214457

    [15]

    WHITTAKER H R, MVLLEROVA H, JARVIS D, et al. Inhaled corticosteroids, blood eosinophils, and FEV1 decline in patients with COPD in a large UK primary health care setting[J]. Int J Chron Obstruct Pulmon Dis, 2019, 14: 1063-1073. doi: 10.2147/COPD.S200919

    [16]

    MATHIOUDAKIS A G, BIKOV A, FODEN P, et al. Change in blood eosinophils following treatment with inhaled corticosteroids may predict long-term clinical response in COPD[J]. Eur Respir J, 2020, 55(5): 1902119. doi: 10.1183/13993003.02119-2019

    [17]

    BAFADHEL M, DAVIES L, CALVERLEY P M A, et al. Blood eosinophil guided prednisolone therapy for exacerbations of COPD: a further analysis[J]. Eur Respir J, 2014, 44(3): 789-791. doi: 10.1183/09031936.00062614

    [18]

    BRIGHTLING C, GREENING N. Airway inflammation in COPD: progress to precision medicine[J]. Eur Respir J, 2019, 54(2): 1900651. doi: 10.1183/13993003.00651-2019

    [19]

    MKOROMBINDO T, DRANSFIELD M T. Mepolizumab in the treatment of eosinophilic chronic obstructive pulmonary disease[J]. Int J Chronic Obstr Pulm Dis, 2019, 14: 1779-1787. doi: 10.2147/COPD.S162781

    [20]

    PAVORD I D, CHANEZ P, CRINER G J, et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease[J]. N Engl J Med, 2017, 377(17): 1613-1629. doi: 10.1056/NEJMoa1708208

    [21]

    FERNANDEZ ROMERO G A, BEROS J, CRINER G. Mepolizumab for the prevention of chronic obstructive pulmonary disease exacerbations[J]. Expert Rev Respir Med, 2019, 13(2): 125-132. doi: 10.1080/17476348.2019.1561287

    [22]

    HASSANI M, KOENDERMAN L. Immunological and hematological effects of IL-5(Rα)-targeted therapy: an overview[J]. Allergy, 2018, 73(10): 1979-1988. doi: 10.1111/all.13451

    [23]

    NIXON J, NEWBOLD P, MUSTELIN T, et al. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation[J]. Pharmacol Ther, 2017, 169: 57-77. doi: 10.1016/j.pharmthera.2016.10.016

    [24]

    BRIGHTLING C E, BLEECKER E R, PANETTIERI R J, et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study[J]. Lancet Respir Med, 2014, 2(11): 891-901. doi: 10.1016/S2213-2600(14)70187-0

    [25]

    CRINER G J, CELLI B R, SINGH D, et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies[J]. Lancet Respir Med, 2020, 8(2): 158-170. doi: 10.1016/S2213-2600(19)30338-8

    [26]

    FAJT M L, WENZEL S E. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care[J]. J Allergy Clin Immunol, 2015, 135(2): 299-311. doi: 10.1016/j.jaci.2014.12.1871

    [27]

    KIM S W, RHEE C K, KIM K U, et al. Factors associated with plasma IL-33 levels in patients with chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2017, 12: 395-402. doi: 10.2147/COPD.S120445

    [28]

    DOYLE A D, MUKHERJEE M, LESUER W E, et al. Eosinophil-derived IL-13 promotes emphysema[J]. Eur Respir J, 2019, 53(5): 1801291. doi: 10.1183/13993003.01291-2018

    [29]

    EICKMEIER O, HUEBNER M, HERRMANN E, et al. Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function[J]. Cytokine, 2010, 50(2): 152-157. doi: 10.1016/j.cyto.2010.02.004

    [30]

    PANETTIERI R A Jr, SJÖBRING U, PÉTERFFY A, et al. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials[J]. Lancet Respir Med, 2018, 6(7): 511-525. doi: 10.1016/S2213-2600(18)30184-X

    [31]

    KAUR D, GOMEZ E, DOE C, et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk[J]. Allergy, 2015, 70(5): 556-567. doi: 10.1111/all.12593

    [32]

    SHANG J, ZHAO J L, WU X J, et al. Interleukin-33 promotes inflammatory cytokine production in chronic airway inflammation[J]. Biochimie et Biol Cell, 2015, 93(4): 359-366. doi: 10.1139/bcb-2014-0163

    [33]

    JACKSON D J, MAKRINIOTI H, RANA B M, et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo[J]. Am J Respir Crit Care Med, 2014, 190(12): 1373-1382. doi: 10.1164/rccm.201406-1039OC

    [34]

    UCHIMIZU H, MATSUWAKI Y, KATO M, et al. Eosinophil-derived neurotoxin, elastase, and cytokine profile in effusion from eosinophilic otitis media[J]. Allergol Int, 2015, 64(Suppl): S18-S23.

    [35]

    RABE K F, WATZ H, BARALDO S, et al. Anti-inflammatory effects of roflumilast in chronic obstructive pulmonary disease (ROBERT): a 16-week, randomised, placebo-controlled trial[J]. Lancet Respir Med, 2018, 6(11): 827-836. doi: 10.1016/S2213-2600(18)30331-X

    [36]

    MARTINEZ F J, RABE K F, CALVERLEY P M A, et al. Determinants of response to roflumilast in severe chronic obstructive pulmonary disease. pooled analysis of two randomized trials[J]. Am J Respir Crit Care Med, 2018, 198(10): 1268-1278. doi: 10.1164/rccm.201712-2493OC

    [37] 王红梅, 刘耘充, 郑丹蕾, 等. 血嗜酸性粒细胞作为生物标志物在慢性阻塞性肺疾病中的研究进展[J]. 中华全科医学, 2020, 18(5): 815-820. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202005032.htm
    [38]

    JACKSON D J, KORN S, MATHUR S K, et al. Safety of Eosinophil-Depleting Therapy for Severe, Eosinophilic Asthma: Focus on Benralizumab[J]. Drug Safety, 2020, 43.

  • 期刊类型引用(6)

    1. 黄晨岚. 25羟维生素D、超敏c反应蛋白、估计肾小球滤过率与脑萎缩相关性的临床研究. 黑龙江医药. 2024(01): 44-47 . 百度学术
    2. 桂千,侯晓夏,徐勤荣,冯红选,吴冠会,卢艳丽,程庆璋. 脑微出血与非关键部位脑梗死患者认知功能的相关性. 实用临床医药杂志. 2023(13): 43-47+52 . 本站查看
    3. 蹇秋枫,徐荣华,姚倩,周媛媛. 中国老年脑卒中患者认知障碍患病率和影响因素的Meta分析. 中国全科医学. 2023(32): 4070-4079+4088 . 百度学术
    4. 李梦洁,肖佳男,刘文娟,练芮含,张丽秀. 外周血1, 25-(OH)_2D_3、神经元特异性烯醇化酶、神经胶质纤维酸性蛋白在小儿复杂性惊厥中的表达意义. 中国儿童保健杂志. 2023(11): 1254-1259 . 百度学术
    5. 张丽. 脑梗死后认知功能损害与神经功能恢复及生活质量的相关性研究. 临床研究. 2022(08): 77-80 . 百度学术
    6. 雷霄明,薛孟周,夏彬,李晶,郭平平. 血清25-羟维生素D和脂联素与脑白质损伤患者认知功能的相关性研究. 实用临床医药杂志. 2022(19): 33-37 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-03-26
  • 网络出版日期:  2021-10-19
  • 发布日期:  2021-09-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭