Analysis of differential gene enrichment and weighted gene co-expression network in coronary artery disease
-
摘要:目的 采用基因集富集分析和加权基因共表达网络分析探讨冠状动脉疾病的差异表达基因,挖掘与冠状动脉疾病发病相关的关键基因。方法 从美国国家生物技术信息中心(NCBI)基因表达综合数据库下载GSE71226数据集,筛选冠状动脉疾病差异基因并进行富集分析; 对差异基因进行基因集富集分析,筛选冠状动脉疾病差异表达基因相关的微小RNA(miRNAs)并构建调控网络; 根据基因的相关性,构建基因共表达模块,并计算模块基因与临床信息的相关性; 选取与临床表型显著相关的模块,构建蛋白质互作网络并筛选核心基因。结果 经筛选,共获取冠状动脉疾病差异表达基因130个,富集于Hippo、流体剪切力与动脉粥样硬化、一磷酸腺苷依赖的蛋白激酶(AMPK)、Wnt、核苷酸结合寡聚化结构域(NOD)样受体和白细胞介素17等信号通路上。富集分析显示, miR-503-3p、miR-3674、miR-5088-5p、miR-4486等miRNAs与冠状动脉疾病关系密切。根据基因表达的相关性,获取10个共表达模块,其中洋红色模块与冠状动脉疾病发病显著相关。经拓扑分析, BMP4和C3在网络中处于核心地位。结论 冠状动脉疾病发病过程中基因表达存在显著差异,其病理过程涉及多靶点、多通路,可能受到多个miRNAs调控。BMP4和C3可能是冠状动脉疾病发病的关键基因。Abstract:Objective To explore the differential expression genes of coronary artery disease by gene set enrichment analysis and weighted gene co-expression network analysis and excavate key genes associated with the development of coronary artery disease.Methods The GSE71226 dataset was downloaded from the Gene Expression Omnibus database of the National Center for Biotechnology Information (NCBI), and the differential genes of coronary artery disease were screened and the enrichment analysis was performed. The gene set enrichment analysis was performed on the differential genes to screen for microRNAs (miRNAs) associated with differential expression genes in coronary artery disease, and the regulation network was constructed. The gene co-expression modules were constructed based on the correlation of genes, and the correlation between gene modules and clinical information was calculated. The genes of modules significantly correlating with clinical phenotypes were selected to construct protein-protein interaction network for screening of the core genes.Results After screening, a total of 130 differential expression genes in coronary artery disease were obtained, enriched in signaling pathways such as Hippo, fluid shear stress and atherosclerosis, adenosine monophosphate-dependent protein kinase (AMPK), Wnt, nucleotide-binding oligomerization domain (NOD) like receptors and interleukin 17. Enrichment analysis showed that the miRNAs such as miR-503-3p, miR-3674, miR -5088-5p and miR-4486 were closely related to coronary artery disease. Based on the correlation of gene expression, 10 co-expression modules were obtained, and the magenta module was significantly associated with the development of coronary artery disease. Topological analysis showed that BMP4 and C3 were the core genes of the protein-protein interaction network.Conclusion There are significant differences in gene expressions during the pathogenesis of coronary artery disease, the pathological process involves multiple targets and pathways, and pathogenesis involving in multiple targets and pathways may be regulated by multiple miRNAs. BMP4 and C3 may be the core genes in the pathogenesis of coronary artery disease.
-
-
表 1 CAD的DEGs
表达水平 基因 上调 CCNE1、LEFTY1、WNT10A、NCR2、SELENBP1、CFC1、IL1R2、SEMA4A、HBG1、INSRR、PNPLA2、TNMD、RNF182、DCAF12、METTL7B、LGI4、GNG13、S100A11、GYPC、PDZK1IP1、CACNG2、ACTG1、RAX2、SLC9A3、SCG5、R3HDM4、KATNB1、SIRPB1、FCGR3B、MUC2、DMTN、CLDN7、UBC、ACADS、RPL39、ZNF428、DRP2、CIB3、EPN1、CKB、RS1、TAF6、ADIPOR1、STRADB、GFRA3、ACTB、TYROBP、IFITM2、EPB42、KRT23、COG7、RPS12、UBA52、MKRN1、VNN2、SLC4A1、RILP、OR1E1、LATS2、S100A13、C5AR1、IGF1R 下调 ANAPC2、ENTPD4、PLCB3、TCTN3、HTR3A、CCDC183、ZNF646、NUDC、PCGF6、LIN28A、PARP10、RPL37A、INF2、EEF1D、NDUFB7、RPL41、RPLP2、NHSL1、MTHFS、PWWP2B、CAMK2A、ADM2、GLUD2、YIF1B、ATXN7L2、PLB1、CCDC43、THPO、GET4、EFNA4、DROSHA、LCN1、PLEC、SEC14L5、XAB2、FAM78A、PFDN2、TXN2、ETS2、DYRK2、STAB 1、GSPT2、PAM、CES2、BAZ1B、VANGL1、IRF7、RASGRP1、DCXR、S100A8、EML3、AVP、HIST1H2AC、TTC22、DYRK1B、TMSB4Y、TFPT、RBM4B、SLC1A5、RNF19A、QDPR、ISYNA1、BTBD3、MAPK9、LIM2、ARPC1B、DLGAP1、RPLP1 -
[1] KHERA A V, KATHIRESAN S. Genetics of coronary artery disease: discovery, biology and clinical translation[J]. Nat Rev Genet, 2017, 18(6): 331-344. doi: 10.1038/nrg.2016.160
[2] 邱敏, 徐少华, 姜海, 等. 冠状动脉慢血流患者脂蛋白相关磷脂酶A2及超敏C反应蛋白的变化[J]. 实用临床医药杂志, 2019, 23(10): 29-32. doi: 10.7619/jcmp.201910009 [3] 徐宝, 袁帅, 何胜虎. 残粒脂蛋白胆固醇与冠状动脉粥样硬化的相关性研究进展[J]. 实用临床医药杂志, 2019, 23(9): 129-132. doi: 10.7619/jcmp.201909036 [4] BRAUN M M, STEVENS W A, BARSTOW C H. Stable coronary artery disease: treatment[J]. Am Fam Physician, 2018, 97(6): 376-384.
[5] TUNG Y C, SEE L C, CHANG S H, et al. Impact of bleeding during dual antiplatelet therapy in patients with coronary artery disease[J]. Sci Rep, 2020, 10(1): 21345. doi: 10.1038/s41598-020-78400-4
[6] 刘亚文, 张红燕, 阳灵燕. 共词分析国内外生物信息学领域研究态势[J]. 生物信息学, 2020, 18(3): 186-194. https://www.cnki.com.cn/Article/CJFDTOTAL-XXSW202003008.htm [7] CLOUGH E, BARRETT T. The gene expression omnibus database[J]. Methods Mol Biol Clifton N J, 2016, 1418: 93-110. http://165.112.7.20/geo/info/GEOHandoutFinal.pdf
[8] SUBRAMANIAN A, TAMAYO P, MOOTHA V K, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. PNAS, 2005, 102(43): 15545-15550. doi: 10.1073/pnas.0506580102
[9] GE S X, SON E W, YAO R N. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data[J]. BMC Bioinformatics, 2018, 19(1): 534. doi: 10.1186/s12859-018-2486-6
[10] CHIN C H, CHEN S H, WU H H, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome[J]. BMC Syst Biol, 2014, 8(Suppl 4): S11. http://www.researchgate.net/profile/Shu_Hwa_Chen/publication/279993174_cytoHubba_Identifying_hub_objects_and_sub-networks_from_complex_interactome/links/56c79b5408ae5488f0d2ddef/cytoHubba-Identifying-hub-objects-and-sub-networks-from-complex-interactome.pdf
[11] GUPTA R M. Hippo pathway looms large for the function of the JCAD (junctional protein associated with coronary artery disease) on endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2018, 38(11): 2546-2547. doi: 10.1161/ATVBAHA.118.311342
[12] JONES P D, KAISER M A, GHADERI NAJAFABADI M, et al. JCAD, a gene at the 10p11 coronary artery disease locus, regulates hippo signaling in endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2018, 38(8): 1711-1722. doi: 10.1161/ATVBAHA.118.310976
[13] BAEYENS N, BANDYOPADHYAY C, COON B G, et al. Endothelial fluid shear stress sensing in vascular health and disease[J]. J Clin Invest, 2016, 126(3): 821-828. doi: 10.1172/JCI83083
[14] ZHOU H, MENG L, ZHOU W, et al. Computational and experimental assessment of influences of hemodynamic shear stress on carotid plaque[J]. Biomed Eng Online, 2017, 16(1): 92. doi: 10.1186/s12938-017-0386-z
[15] WU H F, SONG A W, HU W J, et al. The anti-atherosclerotic effect of paeonol against vascular smooth muscle cell proliferation by up-regulation of autophagy via the AMPK/mTOR signaling pathway[J]. Front Pharmacol, 2017, 8: 948. http://pubmedcentralcanada.ca/pmcc/articles/PMC5758604/
[16] KIMURA Y, YANAGIDA T, ONDA A, et al. Soluble uric acid promotes atherosclerosis via AMPK (AMP-activated protein kinase)-mediated inflammation[J]. Arterioscler Thromb Vasc Biol, 2020, 40(3): 570-582. doi: 10.1161/ATVBAHA.119.313224
[17] YE Z J, GO G W, SINGH R, et al. LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake[J]. J Biol Chem, 2012, 287(2): 1335-1344. doi: 10.1074/jbc.M111.295287
[18] ACKERS I, SZYMANSKI C, DUCKETT K J, et al. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis[J]. Cardiovasc Pathol, 2018, 34: 1-8. doi: 10.1016/j.carpath.2018.01.008
[19] TANG G, DUAN F Q, LI W X, et al. Metformin inhibited Nod-like receptor protein 3 inflammasomes activation and suppressed diabetes-accelerated atherosclerosis in apoE-/- mice[J]. Biomedecine Pharmacother, 2019, 119: 109410. doi: 10.1016/j.biopha.2019.109410
[20] VLACIL A K, SCHUETT J, RUPPERT V, et al. Deficiency of Nucleotide-binding oligomerization domain-containing proteins (NOD) 1 and 2 reduces atherosclerosis[J]. Basic Res Cardiol, 2020, 115(4): 47. doi: 10.1007/s00395-020-0806-2
[21] DANZAKI K, MATSUI Y, IKESUE M, et al. Interleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2012, 32(2): 273-280. doi: 10.1161/ATVBAHA.111.229997
[22] GISTER A, ROBERTSON A K, ANDERSSON J, et al. Transforming growth factor-β signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway[J]. Sci Transl Med, 2013, 5(196): 196ra100. http://www.ingentaconnect.com/content/el/00219150/2014/00000235/00000002/art00718
[23] ZHONG W, LI B, XU Y, et al. Hypermethylation of the micro-RNA 145 promoter is the key regulator for NLRP3 inflammasome-induced activation and plaque formation[J]. JACC Basic Transl Sci, 2018, 3(5): 604-624. doi: 10.1016/j.jacbts.2018.06.004
[24] SALA F, ARANDA J F, ROTLLAN N, et al. MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/-mice[J]. Thromb Haemost, 2014, 112(4): 796-802. http://cardiovascres.oxfordjournals.org/lookup/external-ref?access_num=10.1160/TH13-11-0905&link_type=DOI
[25] ZHANG Y, LIU X, BAI X, et al. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis[J]. J Pineal Res, 2018, 64(2): 12449. doi: 10.1111/jpi.12449
[26] WU W B, SHAN Z, WANG R, et al. Overexpression of miR-223 inhibits foam cell formation by inducing autophagy in vascular smooth muscle cells[J]. Am J TranslRes, 2019, 11(7): 4326-4336. http://www.researchgate.net/publication/335099958_Overexpression_of_miR-223_inhibits_foam_cell_formation_by_inducing_autophagy_in_vascular_smooth_muscle_cells
[27] TAO J, XIA L Z, CAI Z M, et al. Interaction between microRNA and DNA methylation in atherosclerosis[J]. DNA Cell Biol, 2021, 40(1): 101-115. doi: 10.1089/dna.2020.6138
[28] DAVID L, FEIGE J J, BAILLY S. Emerging role of bone morphogenetic proteins in angiogenesis[J]. Cytokine Growth Factor Rev, 2009, 20(3): 203-212. doi: 10.1016/j.cytogfr.2009.05.001
[29] KIM C W, SONG H, KUMAR S, et al. Anti-inflammatory and antiatherogenic role of BMP receptor II in endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2013, 33(6): 1350-1359. doi: 10.1161/ATVBAHA.112.300287
[30] SON J W, JANG E H, KIM M K, et al. Serum BMP-4 levels in relation to arterial stiffness and carotid atherosclerosis in patients with Type 2 diabetes[J]. Biomark Med, 2011, 5(6): 827-835. doi: 10.2217/bmm.11.81
[31] FRANK D, JOHNSON J, DE CAESTECKER M. Bone morphogenetic protein 4 promotes vascular remodeling in hypoxic pulmonary hypertension[J]. Chest, 2005, 128(6 Suppl): 590S-591S. http://circres.ahajournals.org/content/97/5/496.full.pdf
[32] HERTLE E, VAN GREEVENBROEK M M, ARTS I C, et al. Distinct associations of complement C3a and its precursor C3 with atherosclerosis and cardiovascular disease. The CODAM study[J]. Thromb Haemost, 2014, 111(6): 1102-1111. doi: 10.1160/TH13-10-0831
[33] SHIELDS K J, STOLZ D, WATKINS S C, et al. Complement proteins C3 and C4 bind to collagen and elastin in the vascular wall: a potential role in vascular stiffnessand atherosclerosis[J]. Clin Transl Sci, 2011, 4(3): 146-152. doi: 10.1111/j.1752-8062.2011.00304.x
-
期刊类型引用(7)
1. 张考珍,严燕艺,商明,关换琼,张爱珍. 高龄孕妇再生育出生缺陷情况及其影响因素分析. 中外医学研究. 2022(10): 139-142 . 百度学术
2. 孟远霞. 责任亲情交互护理模式干预在新生儿出生缺陷产妇中的应用效果及对产妇产后生活质量的影响. 临床医学研究与实践. 2021(04): 174-176+182 . 百度学术
3. 罗丽兰,吴岸晓,王丽婷. 胎儿先天性畸形的调查结果统计及危险因素分析. 中国优生与遗传杂志. 2021(01): 107-110 . 百度学术
4. 李淑妮,许晨耘,伍芳芳,蔡容燕,李春蕾,韩丽珍. 海口市2016—2019年新生儿出生缺陷情况及相关影响因素分析. 实用预防医学. 2021(07): 881-884 . 百度学术
5. 章历红,赵灵. 高龄孕产妇孕前及孕期检查现状及影响因素分析. 中国计划生育学杂志. 2021(08): 1563-1567 . 百度学术
6. 俞鹏,邓晓龙,袁军. 2017—2020年泰州市新生儿出生缺陷发生率调查及特征观察. 中国妇幼健康研究. 2021(09): 1245-1249 . 百度学术
7. 刘清玲,刘长娣,杨舒. 胎儿发生先天性畸形的数据比例及影响因素的Logistic回归分析. 中国优生与遗传杂志. 2020(08): 1017-1019 . 百度学术
其他类型引用(3)