甘油三酯葡萄糖体质量指数的研究进展

李亚年, 何胜虎

李亚年, 何胜虎. 甘油三酯葡萄糖体质量指数的研究进展[J]. 实用临床医药杂志, 2022, 26(9): 130-133. DOI: 10.7619/jcmp.20213765
引用本文: 李亚年, 何胜虎. 甘油三酯葡萄糖体质量指数的研究进展[J]. 实用临床医药杂志, 2022, 26(9): 130-133. DOI: 10.7619/jcmp.20213765
LI Yanian, HE Shenghu. Research progress of triglyceride glucose-body mass index[J]. Journal of Clinical Medicine in Practice, 2022, 26(9): 130-133. DOI: 10.7619/jcmp.20213765
Citation: LI Yanian, HE Shenghu. Research progress of triglyceride glucose-body mass index[J]. Journal of Clinical Medicine in Practice, 2022, 26(9): 130-133. DOI: 10.7619/jcmp.20213765

甘油三酯葡萄糖体质量指数的研究进展

详细信息
    通讯作者:

    何胜虎, E-mail: yzhshys@163.com

  • 中图分类号: R589;R446

Research progress of triglyceride glucose-body mass index

  • 摘要: 胰岛素抵抗(IR)是心血管疾病及各种代谢性疾病的重要影响因素之一, 在疾病发生之前及早识别IR至关重要。甘油三脂葡萄糖体质量(TyG-BMI)指数是新提出的经济有效的IR评价指标。近年来, TyG-BMI指数在动脉粥样硬化、高血压前期、糖尿病前期、高尿酸血症、非酒精性脂肪性肝病等多种临床常见病中的评估作用得到一定的证实,成为研究新方向。但目前国内外关于TyG-BMI指数的研究仍较少,具体机制尚不清楚,有待进一步探索。本文就TyG-BMI指数研究进展及其与常见病的关系进行综述,以期为疾病的早期预防提供积极的指导。
    Abstract: Insulin resistance (IR) is one of the important factors affecting cardiovascular diseases and various metabolic diseases. It is very important to identify IR before the disease occurs. Triglyceride glucose-body mass (TyG-BMI) index is a new economic and effective index for evaluating IR. In recent years, the role of TyG-BMI in the evaluation of atherosclerosis, prehypertension, prediabetes, hyperuricemia, non-alcoholic fatty liver disease and other common clinical diseases has been confirmed to some extent, and it has become a new research direction. However, there are still few studies on TyG-BMI at home and abroad, and the specific mechanism remains unclear and needs further exploration. This paper reviewed the research progress of TyG-BMI and its relationship with common diseases, in order to provide positive guidance for the early prevention.
  • 随着经济和社会的发展,心血管疾病和各种代谢性疾病逐渐成为医疗卫生系统沉重的负担。据《中国心血管健康与疾病报告2020》[1]推算,中国心血管病患人数3.3亿,心血管病死亡是城乡居民总死亡原因的首位[2],中国糖尿病的患病率逐年攀升[3]。研究[4-6]表明,胰岛素抵抗(IR)是心血管疾病和各种代谢性疾病发生发展的重要影响因素,因此在疾病发生之前及早识别IR至关重要。传统用于评估IR的方法主要有高胰岛素-正葡萄糖钳夹法(HIEC)、稳态模型评估(HOMA-IR)等,但复杂且耗时,对研究环境的适用性有限。近年来,甘油三酯葡萄糖(TyG)指数以及甘油三脂葡萄糖体质量(TyG-BMI)指数成了新的评估IR的替代标志物,可由空腹甘油三酯、空腹血糖、体质量指数计算得出,其诊断的准确性已在相关研究中得到验证,应用前景广阔。研究[7]表明, TyG-BMI指数相对于TyG指数的诊断意义更显著。现就TyG-BMI指数的研究进展及其与常见病的相关性作综述。

    IR反映的是细胞对胰岛素的反应能力受到损害的病理现象[8], 其发病机理主要包括体内胰岛素受体、传导通路和β3-肾上腺素能受体发生变化,或者体内对抗正常调节通路的作用增强[9]。传统评估IR的方式均有一定的局限性, HIEC于1979年首次提出,至今仍是评估IR的“黄金标准”[10], HIEC的主要局限性在于费时、费力及昂贵,需要经验丰富的操作员来解决技术难题,且钳夹利用的稳态胰岛素水平可能超生理学。HOMA-IR局限性在于接受胰岛素治疗的受试者对胰岛素的敏感性需要进一步验证; 对于严重受损或缺乏β细胞功能的患者, HOMA-IR可能无法提供适当的结果。

    TyG-BMI指数最早于2016年提出,通过比较脂质、脂肪因子及脂质和脂肪因子的比率,以及内脏脂肪指标、TyG和TyG相关参数对早期识别IR的价值,得出了TyG-BMI指数与HOMA-IR的关联性最强,提示TyG-BMI指数可用于IR早期鉴定,简单、功能强大且临床效果较好[7]。另有研究[11-12]表明,当TyG指数结合一些肥胖指标如BMI、腰围(WC)及腰围身高比(WTHR)时, 可提高其评价IR的效率。一项研究[13]通过比较TyG指数、TyG-BMI指数、TyG-WC和TyG-WHtR与IR的关联,得出TyG-BMI指数在预测IR方面高于其他参数,进一步证明可以使用TyG-BMI指数作为临床环境中评估IR的替代指标。TyG指数结合TyG-BMI指数评估IR, 其预测价值可能会进一步提升,为临床常见心血管相关慢性病的早期预防提供更积极的指导。

    IR对动脉粥样硬化影响的主要机制是IR可以触发内皮功能障碍,增加在内皮细胞、血管平滑肌细胞增殖和迁移中起重要作用的血管细胞黏附分子-1(VCAM-1)的表达,触发白细胞黏附,加速动脉粥样硬化的发展。同时, IR可以潜移默化地长时间诱导巨噬细胞的内质网应激,并且促进巨噬细胞凋亡,最终在动脉粥样硬化进展中导致斑块坏死[14]

    既往研究[15]发现, IR是冠心病患者动脉粥样硬化斑块进展的独立预测因子。一项关于评估成年人动脉粥样硬化性心血管疾病(ASCVD)风险的研究[16]也发现, TyG-BMI指数与女性的ASCVD风险升高显著相关。一项关于缺血性脑卒中研究[17]发现,一般人群中TyG-BMI指数与缺血性脑卒中之间存在独立联系,并且该关系为线性,没有阈值或饱和作用, TyG-BMI指数每增加1个标准差,缺血性脑卒中的发生风险就增加20%。同时, TyG-BMI指数对改善缺血性中风的危险分层具有潜在的实用性,以上研究说明TyG-BMI指数与动脉粥样硬化具有一定的相关性,但目前关于其他动脉粥样硬化性疾病如血栓形成、动脉闭塞等的研究较少,还需进一步探索。

    高血压前期是指收缩压120~139 mmHg和/或舒张压80~89 mmHg。全世界44周岁以下的成年人高血压前期的发生率为37.5%~77.1%[18-20]。IR对血压的影响是一个复杂的多因素关系,包括遗传因素和环境因素[21]。早年研究[22]发现,在血管系统,胰岛素可以通过刺激一氧化氮(NO)的产生诱导血管舒张。因此, IR状态会抑制NO的产生,继而影响血管舒张。目前, IR引起血压升高的机制主要包括组织中血管紧张素Ⅱ和醛固酮的活性升高[23-24]、交感神经的活性升高[25]、氧化应激[26]以及“内皮性胰岛素抵抗现象”,该现象指出内皮细胞受损可能是外周血胰岛素敏感性降低的原因[27]

    一项研究[28]通过调查105 070名无高血压的非肥胖者,按相应的公式计算BMI、WC、WtHR和TyG指数、TyG-BMI指数、TyG-WC、TyG-WHtR, 得出TyG指数、TyG-BMI指数、TyG-WC和TyG-WHtR均与收缩压、舒张压呈正相关,完全调整混杂因素后,发现只有TyG-BMI、TyG-WC与高血压前期显著相关。该研究表明, TyG-BMI指数作为一种简单的IR替代指标,相对于TyG指数,是非肥胖患者高血压前期的可靠补充监测指标。但该研究调查者类别较单一, TyG-BMI指数的适用条件具有一定的限制,需要进一步研究。

    糖尿病前期是介于糖尿病患者和健康者之间的中间状态。其存在使2型糖尿病的发病风险高了3~10倍[29]。目前糖尿病前期尚无准确的定义或者诊断标准,常用空腹血糖受损(IFG, 指空腹血糖波动在100~125 mg/dL)或葡萄糖耐量受损(IGT,指口服75 g葡萄糖耐量试验2 h, 血浆葡萄糖水平波动在140~200 mg/dL)来表示[30]。目前,评估糖尿病前期的主要方式仍是实验室检查,包括血糖、糖化血红蛋白、血浆胰岛素水平等,指标较单一,诊断效能有限。

    最新的研究通过评估11个与肥胖和脂质相关的参数在识别老年哥伦比亚人群中糖尿病前期风险方面的预测能力,得出糖尿病前期参与者的肥胖指标包括BMI、WC、WHtR、TyG指数、TyG-BMI指数、TyG-WC和TyG-WHtRs等与健康组相比显著升高。TyG指数与肥胖指标的结合可用于预测空腹血糖高的风险[13]。此外,进一步的研究[8]发现, TyG-BMI指数是预测成年人中糖尿病前期的最佳指标。

    HUA的诊断标准是男性或绝经后妇女的血清尿酸≥420 μmol/L, 绝经前妇女血清尿酸≥360 μmol/L。除引起痛风、慢性肾脏疾病外, HUA也在高血压、糖尿病、心血管疾病的发生发展过程中发挥重要作用[31]。因此,早期识别并及早干预HUA具有重要意义。IR引起HUA的机制主要是通过尿酸转运蛋白完成的。肾脏作为代谢尿酸的重要器官,其主要作用机制是依靠肾小管中的各种尿酸转运蛋白[32], 这些转运蛋白由基因编码,受遗传、环境等多因素影响[33-34]。胰岛素可作为一种内源性调节因子,通过影响肾脏中的尿酸转运蛋白的作用来影响尿酸的代谢[35]。因此,存在IR时,代偿性的高胰岛素血症可影响尿酸转运蛋白的表达,进而减少尿酸的代谢,在HUA的发生发展中起重要作用[36]

    一项关于中国东北地区6 466名受试者的研究[37]发现,TyG指数与HUA之间存在线性而牢固的联系,TyG指数每增加一个标准差,血清尿酸浓度升高12.528 μmol/L, 并增加54.10% 的HUA风险,当将TyG分成四分位数时,最高四分位数的HUA风险是最低四分位数的2.73倍,说明同时控制血糖和脂质对预防HUA具有重要意义。一项关于42 387名接受常规健康检查且无HUA的成年人的研究[38]发现,TyG整合肥胖指标时,相对于TyG指数,可以增强其与女性患者HUA的关联性,具体而言,患病组与正常组相比,TyG-BMI指数在女性中的平均差异为51.90, 在男性中为36.90, 而TyG指数在女性中的平均差异为0.18, 在男性中为0.13。

    NAFLD是一种常见的肝脏代谢性疾病,实质是肝细胞脂质异常沉积,可发展为非酒精性脂肪性肝炎(NASH),最终导致肝硬化甚至肝癌。研究[39]表明, IR与NAFLD密切相关, IR通过激活肝星状细胞促进肝脏炎症与纤维化进展。NAFLD常见于与肥胖相关的代谢异常的个体,在非肥胖的中国人群中,也有超过1/5的人患有NAFLD[40]。既往研究[41-42]通过招募50名无症状女性,得出TyG筛查单纯性脂肪变性的敏感性为0.94, 特异性为0.69, 最佳截止点为4.58, 表明TyG指数作为IR的替代标志物,与SteatoTest、NashTest、脂肪肝指数和算法相比,是最佳的筛查指标,可以有效识别有NAFLD危险的个体。

    研究发现, TyG-BMI指数与NAFLD风险之间存在更加牢固且积极的联系,优于TyG指数、BMI、甘油三酯和空腹血糖,并且进一步证明,与肥胖者相比,非肥胖个体中的TyG-BMI指数与NAFLD风险更紧密。研究[40]表明, TyG-BMI指数每增加1个标准差, NAFLD的优势比为3.4(95%CI∶3.0~3.9), TyG指数每增加1个标准差, NAFLD的优势比为2.1(95%CI∶1.9~2.2)。分析原因可能是TyG指数联合BMI考虑了体质量带来的影响, BMI作为评估肥胖的指标之一,将其纳入复合指标可能提升了诊断效能。

    综上所述, TyG-BMI指数作为一种由TyG指数延伸而来新的评估IR的有效且简单经济的指标,在动脉粥样硬化、高血压前期、糖尿病前期、HUA以及NAFLD中均有确切的意义,且相对于TyG指数,预测上述常见心血管相关慢性病的能力更好。但目前国内外对于TyG-BMI指数的研究仍然较少,缺乏大样本数据和实验研究数据支持,也缺乏更多相关心血管相关慢性病的关联性分析,仍需进一步深入研究。

  • [1] 《中国心血管健康与疾病报告2020》编写组. 《中国心血管健康与疾病报告2020》概述[J]. 中国心血管病研究, 2021, 19(7): 582-590. doi: 10.3969/j.issn.1672-5301.2021.07.002
    [2]

    WANG Z W, CHEN Z, ZHANG L F, et al. Status of hypertension in China: results from the China hypertension survey, 2012-2015[J]. Circulation, 2018, 137(22): 2344-2356. doi: 10.1161/CIRCULATIONAHA.117.032380

    [3]

    WANG L M, ZHOU B, ZHAO Z P, et al. Body-mass index and obesity in urban and rural China: findings from consecutive nationally representative surveys during 2004-18[J]. Lancet, 2021, 398(10294): 53-63. doi: 10.1016/S0140-6736(21)00798-4

    [4]

    XIA C, LI R, ZHANG S, et al. Lipid accumulation product is a powerful index for recognizing insulin resistance in non-diabetic individuals[J]. Eur J Clin Nutr, 2012, 66(9): 1035-1038. doi: 10.1038/ejcn.2012.83

    [5]

    CHENG Y H, TSAO Y C, TZENG I S, et al. Body mass index and waist circumference are better predictors of insulin resistance than total body fat percentage in middle-aged and elderly Taiwanese[J]. Medicine (Baltimore), 2017, 96(39): e8126. doi: 10.1097/MD.0000000000008126

    [6]

    GAST K B, TJEERDEMA N, STIJNEN T, et al. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis[J]. PLoS One, 2012, 7(12): e52036. doi: 10.1371/journal.pone.0052036

    [7]

    ER L K, WU S, CHOU H H, et al. Triglyceride glucose-body mass index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals[J]. PLoS One, 2016, 11(3): e0149731. doi: 10.1371/journal.pone.0149731

    [8]

    LILLIOJA S, MOTT D M, SPRAUL M, et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians[J]. N Engl J Med, 1993, 329(27): 1988-1992. doi: 10.1056/NEJM199312303292703

    [9]

    MINH H V, TIEN H A, SINH C T, et al. Assessment of preferred methods to measure insulin resistance in Asian patients with hypertension[J]. J Clin Hypertens (Greenwich), 2021, 23(3): 529-537. doi: 10.1111/jch.14155

    [10]

    SÁNCHEZ-GARCÍA A, RODRÍGUEZ-GUTIÉRREZ R, MANCILLAS-ADAME L, et al. Diagnostic accuracy of the triglyceride and glucose index for insulin resistance: a systematic review[J]. Int J Endocrinol, 2020, 2020: 4678526.

    [11]

    BALA C, GHEORGHE-FRONEA O, POP D, et al. The association between six surrogate insulin resistance indexes and hypertension: a population-based study[J]. Metab Syndr Relat Disord, 2019, 17(6): 328-333. doi: 10.1089/met.2018.0122

    [12]

    RAMÍREZ-VÉLEZ R, PÉREZ-SOUSA M Á, GONZÁLEZ-RUÍZ K, et al. Obesity- and lipid-related parameters in the identification of older adults with a high risk of prediabetes according to the American diabetes association: an analysis of the 2015 health, well-being, and aging study[J]. Nutrients, 2019, 11(11): 2654. doi: 10.3390/nu11112654

    [13]

    LIM J, KIM J, KOO S H, et al. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: an analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey[J]. PLoS One, 2019, 14(3): e0212963. doi: 10.1371/journal.pone.0212963

    [14]

    BORNFELDT K E, TABAS I. Insulin resistance, hyperglycemia, and atherosclerosis[J]. Cell Metab, 2011, 14(5): 575-585. doi: 10.1016/j.cmet.2011.07.015

    [15]

    AN X Q, YU D, ZHANG R Y, et al. Insulin resistance predicts progression of de novo atherosclerotic plaques in patients with coronary heart disease: a one-year follow-up study[J]. Cardiovasc Diabetol, 2012, 11: 71. doi: 10.1186/1475-2840-11-71

    [16]

    HUANG Y C, HUANG J C, LIN C I, et al. Comparison of innovative and traditional cardiometabolic indices in estimating atherosclerotic cardiovascular disease risk in adults[J]. Diagnostics (Basel), 2021, 11(4): 603. doi: 10.3390/diagnostics11040603

    [17]

    DU Z, XING L Y, LIN M, et al. Estimate of prevalent ischemic stroke from triglyceride glucose-body mass index in the general population[J]. BMC Cardiovasc Disord, 2020, 20(1): 483. doi: 10.1186/s12872-020-01768-8

    [18]

    MENG X J, DONG G H, WANG D, et al. Epidemiology of prehypertension and associated risk factors in urban adults from 33 communities in China: the CHPSNE study[J]. Circ J, 2012, 76(4): 900-906. doi: 10.1253/circj.CJ-11-1118

    [19]

    PAQUISSI F C, MANUEL V, MANUEL A, et al. Prevalence of cardiovascular risk factors among workers at a private tertiary center in Angola[J]. Vasc Health Risk Manag, 2016, 12: 497-503. doi: 10.2147/VHRM.S120735

    [20]

    AFRIFA-ANANE E, AGYEMANG C, CODJOE S N, et al. The association of physical activity, body mass index and the blood pressure levels among urban poor youth in Accra, Ghana[J]. BMC Public Health, 2015, 15: 269. doi: 10.1186/s12889-015-1546-3

    [21]

    MANCUSI C, IZZO R, DI GIOIA G, et al. Insulin resistance the hinge between hypertension and type 2 diabetes[J]. High Blood Press Cardiovasc Prev, 2020, 27(6): 515-526. doi: 10.1007/s40292-020-00408-8

    [22]

    SCHERRER U, RANDIN D, VOLLENWEIDER P, et al. Nitric oxide release accounts for insulin's vascular effects in humans[J]. J Clin Invest, 1994, 94(6): 2511-2515. doi: 10.1172/JCI117621

    [23]

    STEINBERG H O, CHAKER H, LEAMING R, et al. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance[J]. J Clin Invest, 1996, 97(11): 2601-2610. doi: 10.1172/JCI118709

    [24]

    FUKUDA N, SATOH C, HU W Y, et al. Endogenous angiotensin Ⅱsuppresses insulin signaling in vascular smooth muscle cells from spontaneously hypertensive rats[J]. J Hypertens, 2001, 19(9): 1651-1658. doi: 10.1097/00004872-200109000-00018

    [25]

    LEMBO G, NAPOLI R, CAPALDO B, et al. Abnormal sympathetic overactivity evoked by insulin in the skeletal muscle of patients with essential hypertension[J]. J Clin Invest, 1992, 90(1): 24-29. doi: 10.1172/JCI115842

    [26]

    MASI S, ULIANA M, VIRDIS A. Angiotensin Ⅱ and vascular damage in hypertension: role of oxidative stress and sympathetic activation[J]. Vascul Pharmacol, 2019, 115: 13-17. doi: 10.1016/j.vph.2019.01.004

    [27]

    TABIT C E, CHUNG W B, HAMBURG N M, et al. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications[J]. Rev Endocr Metab Disord, 2010, 11(1): 61-74. doi: 10.1007/s11154-010-9134-4

    [28]

    ZENG Z Y, LIU S X, XU H, et al. Association of triglyceride glucose index and its combination of obesity indices with prehypertension in lean individuals: a cross-sectional study of Chinese adults[J]. J Clin Hypertens (Greenwich), 2020, 22(6): 1025-1032. doi: 10.1111/jch.13878

    [29]

    WILSON M L. Prediabetes: beyond the borderline[J]. Nurs Clin North Am, 2017, 52(4): 665-677. doi: 10.1016/j.cnur.2017.07.011

    [30]

    CHO N H, SHAW J E, KARURANGA S, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138: 271-281. doi: 10.1016/j.diabres.2018.02.023

    [31]

    KANBAY M, JENSEN T, SOLAK Y, et al. Uric acid in metabolic syndrome: from an innocent bystander to a central player[J]. Eur J Intern Med, 2016, 29: 3-8. doi: 10.1016/j.ejim.2015.11.026

    [32]

    HYNDMAN D, LIU S, MINER J N. Urate handling in the human body[J]. Curr Rheumatol Rep, 2016, 18(6): 34. doi: 10.1007/s11926-016-0587-7

    [33]

    TESTA A, PRUDENTE S, LEONARDIS D, et al. A genetic marker of hyperuricemia predicts cardiovascular events in a meta-analysis of three cohort studies in high risk patients[J]. Nutr Metab Cardiovasc Dis, 2015, 25(12): 1087-1094. doi: 10.1016/j.numecd.2015.08.004

    [34]

    SAKURAI H. Urate transporters in the genomic era[J]. Curr Opin Nephrol Hypertens, 2013, 22(5): 545-550. doi: 10.1097/MNH.0b013e328363ffc8

    [35]

    NAKAGAWA T, CIRILLO P, SATO W, et al. The conundrum of hyperuricemia, metabolic syndrome, and renal disease[J]. Intern Emerg Med, 2008, 3(4): 313-318. doi: 10.1007/s11739-008-0141-3

    [36]

    VADAKEDATH S, KANDI V. Probable potential role of urate transporter genes in the development of metabolic disorders[J]. Cureus, 2018, 10(3): e2382.

    [37]

    SHI W R, XING L Y, JING L, et al. Usefulness of Triglyceride-glucose Index for estimating Hyperuricemia risk: insights from a general Population[J]. Postgrad Med, 2019, 131(5): 348-356. doi: 10.1080/00325481.2019.1624581

    [38]

    GU Q, HU X, MENG J, et al. Associations of triglyceride-glucose index and its derivatives with hyperuricemia risk: a cohort study in Chinese general population[J]. Int J Endocrinol, 2020, 2020: 3214716.

    [39]

    FUJⅡ H, KAWADA N, JAPAN STUDY GROUP OF NAFLD JSG-NAFLD. The role of insulin resistance and diabetes in nonalcoholic fatty liver disease[J]. Int J Mol Sci, 2020, 21(11): 3863. doi: 10.3390/ijms21113863

    [40]

    ZHANG S J, DU T T, LI M N, et al. Triglyceride glucose-body mass index is effective in identifying nonalcoholic fatty liver disease in nonobese subjects[J]. Medicine (Baltimore), 2017, 96(22): e7041. doi: 10.1097/MD.0000000000007041

    [41]

    SIMENTAL-MENDÍA L E, SIMENTAL-MENDÍA E, RODRÍGUEZ-HERNÁNDEZ H, et al. The product of triglycerides and glucose as biomarker for screening simple steatosis and NASH in asymptomatic women[J]. Ann Hepatol, 2016, 15(5): 715-720.

    [42]

    FEDCHUK L, NASCIMBENI F, PAIS R, et al. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease[J]. Aliment Pharmacol Ther, 2014, 40(10): 1209-1222. doi: 10.1111/apt.12963

  • 期刊类型引用(5)

    1. 张晶鑫,杨平,葛宇峰,王星果,窦套存,郭军,胡玉萍,王强,王克华,曲亮. 苏禽6号蛋鸡早期血脂代谢规律研究. 畜牧与兽医. 2024(02): 15-21 . 百度学术
    2. 王星果,王克华,胡玉萍,窦套存,郭军,李永峰,曲亮. 苏禽6号蛋鸡产蛋期血清脂质代谢规律研究. 畜牧与兽医. 2024(07): 20-27 . 百度学术
    3. 朱浩,段飞,王沛,张潇. 急性脑梗死患者外周血T淋巴细胞水平与神经功能的相关性. 中国医师杂志. 2024(12): 1761-1765 . 百度学术
    4. 莫俊宁,林均余,翁国媚. 卒中高危因素与血管性帕金森综合征的相关性研究. 黑龙江医药. 2022(06): 1383-1385 . 百度学术
    5. 潜辉. 银杏叶提取物对急性缺血性脑卒中患者临床疗效及各项指标的影响. 实用中西医结合临床. 2022(20): 18-21 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  517
  • HTML全文浏览量:  1650
  • PDF下载量:  108
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-09-17
  • 网络出版日期:  2022-05-09
  • 发布日期:  2022-05-14

目录

/

返回文章
返回