Predictive value of glycemic gap in predicting nosocomial major adverse cardiovascular events in patients with acute myocardial infarction
-
摘要:目的
探讨血糖间隙对急性心肌梗死(AMI)患者院内主要不良心血管事件(MACE)的预测价值。
方法收集2020年10月—2021年5月医院294例AMI患者的临床资料及实验室指标,入院后即刻检测静脉血糖及糖化血红蛋白水平。根据住院期间MACE发生情况将患者分为MACE组和非MACE组。采用单因素及多因素Logistic回归分析影响AMI患者发生MACE的危险因素; 探讨血糖间隙与不良事件的相关性; 采用受试者工作特征(ROC)曲线的曲线下面积(AUC)分析血糖间隙、入院血糖对AMI患者院内发生MACE的预测价值,并评价血糖间隙增强急性冠状动脉事件全球注册评分(GRACE评分)预测AMI患者院内MACE的效能。
结果与非MACE组相比, MACE组血糖间隙及入院血糖增高,差异有统计学意义(P<0.05)。多因素回归分析显示,血糖间隙、入院血糖是AMI患者发生MACE的独立危险因素。ROC曲线表明,血糖间隙及入院血糖对患者院内MACE的发生均有一定的预测价值,其中血糖间隙的AUC为0.750, 最佳临界值为1.511 mmol/L, 敏感度为66.7%, 特异度为74.1%。血糖间隙、GRACE评分单独及联合预测AMI患者院内发生MACE的AUC分别为0.750、0.833、0.859(P<0.05)。
结论血糖间隙与AMI患者的预后相关,能够提高GRACE评分对AMI患者发生MACE的预测价值。
Abstract:ObjectiveTo investigate the value of glycemic gap in predicting nosocomial major adverse cardiovascular events (MACE) in patients with acute myocardial infarction (AMI).
MethodsClinical materials and laboratory indexes of 294 patients with AMI in hospital from October 2020 to May 2021 were collected, they were conducted with detection of venous blood glucose and glycosylated hemoglobin immediately after hospital admission. According to the occurrence of MACE during hospitalization, the patients were divided into MACE group and non-MACE group. Univariate and multivariate Logistic regression were used to analyze the risk factors of MACE in patients with AMI; correlation between glycemic gap and adverse events was discussed; the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to analyze the value of glycemic gap and blood glucose at hospital admission in predicting nosocomial MACE in patients with AMI, and the efficacy of glycemic gap in enhancing Global Registry for Acute Coronary Events score (GRACE score) for prediction of nosocomial MACE in patients with AMI was evaluated.
ResultsCompared with the non-MACE group, the glycemic gap and blood glucose at hospital admission in the MACE group were significantly higher (P<0.05). Multivariate regression analysis showed that the glycemic gap and blood glucose at hospital admission were the independent risk factors for MACE in patients with AMI. The ROC curve showed that both the glycemic gap and the blood glucose at hospital admission have a certain predictive value for occurrence of nosocomial MACE, AUC of glycemic gap was 0.750, the optimum critical value was 1.511 mmol/L, the sensitivity was 66.7%, and the specificity was 74.1%. The AUC values of glycemic gap alone, the GRACE score alone and combination of two indexes in predicting occurrence of nosocomial MACE in patients with AMI were 0.750, 0.833 and 0.859, respectively (P<0.05).
ConclusionGlycemic gap is related to the prognosis of patients with AMI, which can increase the value of the GRACE score in predicting occurrence of MACE in patients with AMI.
-
-
表 1 MACE组与非MACE组患者临床基线资料比较(x±s)[n(%)]
基线资料 非MACE组(n=243) MACE组(n=51) 年龄/岁 61.64±13.24 69.33±11.11* 男性 199(81.89) 34(66.67)* 高血压 116(47.74) 23(45.10) 糖尿病 60(24.69) 17(33.33) 血脂异常 101(41.56) 16(31.37) 体质量指数/(kg/m2) 25.33±4.00 25.66±3.47 收缩压/mmHg 132.23±20.04 136.63±24.54 急性ST段抬高型心肌梗死 196(80.66) 46(90.20) 白细胞计数/(×109/L) 10.27±3.14 11.02±3.09 中性粒细胞/(×109/L) 8.51±2.20 8.82±2.17 血红蛋白/(g/L) 143.57±16.93 135.45±17.23* 入院血糖/(mmol/L) 7.56±3.21 8.57±3.62* 糖化血红蛋白/% 6.43±1.49 6.28±1.15 血糖间隙/(mmol/L) 0.92±2.34 2.98±2.82* 总胆固醇/(mmol/L) 4.36±1.01 4.40±1.15 甘油三酯/(mmol/L) 1.64±1.36 1.52±0.64 低密度脂蛋白胆固醇/(mmol/L) 2.74±0.89 2.88±1.03 高密度脂蛋白胆固醇/(mmol/L) 1.52±0.28 1.49±0.24 血肌酐/(μmol/L) 99.80±39.50 107.70±40.10 血钾/(mmol/L) 4.09±0.50 4.11±0.55 NT-proBNP/(pg/mL) 2 321.53±895.21 6 608.71±2 095.72* 超敏肌钙蛋白T峰值/(ng/L) 3 112.56±2 160.53 4 481.62±3 480.98 CK-MB峰值/(ng/mL) 113.21±76.32 165.82±91.22* LVEF/% 54.64±5.26 47.69±7.70* Killip分级Ⅱ~Ⅳ级 35(14.40) 24(47.06)* 多支病变或左主干病变 176(72.43) 45(88.24)* 住院时间/d 6.26±1.89 10.55±2.35* GRACE评分/分 148.97±30.66 193.24±37.08* MACE: 主要不良心血管事件; NT-proBNP: 氨基末端脑利钠肽前体; CK-MB: 肌酸激酶同工酶; LVEF: 左心室射血分数; GRACE评分: 急性冠状动脉事件全球注册评分。 表 2 影响院内发生MACE的多因素分析
指标 单因素分析 P 多因素分析 P OR(95%CI) OR(95%CI) 年龄/岁 1.051(1.024~1.080) 0.001 1.033(0.989~1.079) 0.155 入院血糖/(mmol/L) 1.098(1.017~1.181) 0.040 1.405(1.217~1.644) 0.048 血糖间隙/(mmol/L) 1.322(1.177~1.484) 0.001 1.492(1.130~1.970) 0.005 血红蛋白/(g/L) 0.973(0.956~0.991) 0.003 1.010(0.981~1.039) 0.511 CK-MB峰值/(ng/mL) 2.172(1.771~3.015) 0.002 1.332(1.172~1.583) 0.024 NT-proBNP/(pg/mL) 1.781(0.756~2.102) 0.188 — — LVEF/% 0.833(0.786~0.833) 0.001 0.859(0.799~0.924) 0.001 Killip分级Ⅱ~Ⅳ级 5.283(2.741~10.182) 0.001 3.456(1.304~9.208) 0.013 多支病变或左主干病变 2.855(1.164~7.002) 0.022 1.495(1.381~7.278) 0.704 GRACE评分/分 1.036(1.025~1.047) 0.001 1.108(1.071~1.146) 0.001 CK-MB: 肌酸激酶同工酶; NT-proBNP: 氨基末端脑利钠肽前体; LVEF: 左心室射血分数; GRACE评分: 急性冠状动脉事件全球注册评分。 表 3 血糖间隙与院内MACE的关系(x±s)[n(%)]
指标 血糖间隙<1.511 mmol/L(n=197) 血糖间隙≥1.511 mmol/L(n=97) 年龄/岁 62.28±13.40 64.39±12.75 男性 162(82.23) 71(73.20) 高血压 90(45.69) 49(50.52) 糖尿病 45(22.84) 32(32.99) NT-proBNP/(pg/mL) 2 521.53±995.21 6 402.75±2 395.70* GRACE评分/分 150.70±31.65 168.72±41.00* Killip分级Ⅱ~Ⅳ级 25(12.69) 34(35.05)* LVEF/% 54.18±5.44 51.92±7.63* 多支病变或左主干病变 141(71.57) 80(82.47)* MACE 17(8.63) 34(35.05)* 死亡 2(1.02) 8(8.25)* 心源性休克 8(4.06) 16(16.49)* 恶性心律失常 4(2.03) 13(13.40)* 急性心力衰竭 15(7.61) 25(25.77)* NT-proBNP: 氨基末端脑利钠肽前体; GRACE评分: 急性冠状动脉事件全球注册评分; LVEF: 左心室射血分数; MACE: 主要不良心血管不良事件。 表 4 血糖间隙联合GRACE评分预测AMI患者院内MACE的ROC曲线分析
变量 AUC 敏感度/% 特异度/% 95%CI P 血糖间隙 0.750 66.7 74.1 0.678~0.821 0.001 GRACE评分 0.833 86.3 67.5 0.772~0.895 0.001 联合 0.859 86.5 74.5 0.807~0.911 0.001 -
[1] DUNGAN K M, BRAITHWAITE S S, PREISER J C. Stress hyperglycaemia[J]. Lancet, 2009, 373(9677): 1798-1807. doi: 10.1016/S0140-6736(09)60553-5
[2] ANGELI F, REBOLDI G, POLTRONIERI C, et al. Detrimental effects of hyperglycemia in acute coronary syndromes: from pathophysiological mechanisms to therapeutic strategies[J]. Mini Rev Med Chem, 2015, 15(14): 1164-1173. doi: 10.2174/1389557515666150722111341
[3] EITEL I, HINTZE S, DE WAHA S, et al. Prognostic impact of hyperglycemia in nondiabetic and diabetic patients with ST-elevation myocardial infarction: insights from contrast-enhanced magnetic resonance imaging[J]. Circ Cardiovasc Imaging, 2012, 5(6): 708-718. doi: 10.1161/CIRCIMAGING.112.974998
[4] OTA S, TANIMOTO T, ORII M, et al. Association between hyperglycemia at admission and microvascular obstruction in patients with ST-segment elevation myocardial infarction[J]. J Cardiol, 2015, 65(4): 272-277. doi: 10.1016/j.jjcc.2014.10.013
[5] NATHAN D M, KUENEN J, BORG R, et al. Translating the A1C assay into estimated average glucose values[J]. Diabetes Care, 2008, 31(8): 1473-1478. doi: 10.2337/dc08-0545
[6] LIAO W I, WANG J C, CHANG W C, et al. Usefulness of glycemic gap to predict ICU mortality in critically ill patients with diabetes[J]. Medicine (Baltimore), 2015, 94(36): e1525. doi: 10.1097/MD.0000000000001525
[7] LIAO W I, WANG J C, LIN C S, et al. Elevated glycemic gap predicts acute respiratory failure and in-hospital mortality in acute heart failure patients with diabetes[J]. Sci Rep, 2019, 9(1): 6279. doi: 10.1038/s41598-019-42666-0
[8] LEE M, LIM J S, KIM Y, et al. Effects of glycemic gap on post-stroke cognitive impairment in acute ischemic stroke patients[J]. Brain Sci, 2021, 11(5): 612. doi: 10.3390/brainsci11050612
[9] DORN A Y, SUN P Y, SANOSSIAN N, et al. Admission glycemic gap in the assessment of patients with intracerebral hemorrhage[J]. Clin Neurol Neurosurg, 2021, 208: 106871. doi: 10.1016/j.clineuro.2021.106871
[10] CHEN P C, TSAI S H, WANG J C, et al. An elevated glycemic gap predicts adverse outcomes in diabetic patients with necrotizing fasciitis[J]. PLoS One, 2019, 14(10): e0223126. doi: 10.1371/journal.pone.0223126
[11] KIM E J, JEONG M H, KIM J H, et al. Clinical impact of admission hyperglycemia on in-hospital mortality in acute myocardial infarction patients[J]. Int J Cardiol, 2017, 236: 9-15. doi: 10.1016/j.ijcard.2017.01.095
[12] LI Y, LI X W, ZHANG Y H, et al. Impact of glycemic control status on patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention[J]. BMC Cardiovasc Disord, 2020, 20(1): 36. doi: 10.1186/s12872-020-01339-x
[13] CATURANO A, GALIERO R, PAFUNDI P C, et al. Does a strict glycemic control during acute coronary syndrome play a cardioprotective effect Pathophysiology and clinical evidence[J]. Diabetes Res Clin Pract, 2021, 178: 108959. doi: 10.1016/j.diabres.2021.108959
[14] HUBERLANT V, PREISER J C. Year in review 2009: critical Care: metabolism[J]. Crit Care, 2010, 14(6): 238. doi: 10.1186/cc9256
[15] WORTHLEY M I, HOLMES A S, WILLOUGHBY S R, et al. The deleterious effects of hyperglycemia on platelet function in diabetic patients with acute coronary syndromes mediation by superoxide production, resolution with intensive insulin administration[J]. J Am Coll Cardiol, 2007, 49(3): 304-310. doi: 10.1016/j.jacc.2006.08.053
[16] SASSO F C, RINALDI L, LASCAR N, et al. Role of tight glycemic control during acute coronary syndrome on CV outcome in type 2 diabetes[J]. J Diabetes Res, 2018, 2018: 3106056. https://pubmed.ncbi.nlm.nih.gov/30402502/
[17] PAK S, YATSYNOVICH Y, MARKOVIC J P. A meta-analysis on the correlation between admission hyperglycemia and myocardial infarct size on CMRI[J]. Hellenike Kardiologike Epitheorese, 2018, 59(3): 174-178. https://www.sciencedirect.com/science/article/pii/S1109966617302282
[18] KHALFALLAH M, ABDELMAGEED R, ELGENDY E, et al. Incidence, predictors and outcomes of stress hyperglycemia in patients with ST elevation myocardial infarction undergoing primary percutaneous coronary intervention[J]. Diab Vasc Dis Res, 2020, 17(1): 1479164119883983.
[19] CHU J P, TANG J N, LAI Y, et al. Association of stress hyperglycemia ratio with intracoronary Thrombus burden in diabetic patients with ST-segment elevation myocardial infarction[J]. J Thorac Dis, 2020, 12(11): 6598-6608. doi: 10.21037/jtd-20-2111
[20] GAO S D, LIU Q B, CHEN H, et al. Predictive value of stress hyperglycemia ratio for the occurrence of acute kidney injury in acute myocardial infarction patients with diabetes[J]. BMC Cardiovasc Disord, 2021, 21(1): 157. doi: 10.1186/s12872-021-01962-2
[21] ZHU Y, LIU K S, MENG S, et al. Augmented glycaemic gap is a marker for an increased risk of post-infarct left ventricular systolic dysfunction[J]. Cardiovasc Diabetol, 2020, 19(1): 101. doi: 10.1186/s12933-020-01075-8
[22] KORACEVIC G, DJORDJEVIC M. Basic types of the first-day glycemia in acute myocardial infarction: Prognostic, diagnostic, threshold and target glycemia[J]. Prim Care Diabetes, 2021, 15(3): 614-618. doi: 10.1016/j.pcd.2021.02.007
[23] LOU R, JIANG L, ZHU B. Effect of glycemic gap upon mortality in critically ill patients with diabetes[J]. J Diabetes Invest, 2021, 12(12): 2212-2220. doi: 10.1111/jdi.13606
[24] TIMÓTEO A T, PAPOILA A L, LOUSINHA A, et al. Predictive impact on medium-term mortality of hematological parameters in Acute Coronary Syndromes: added value on top of GRACE risk score[J]. Eur Heart J Acute Cardiovasc Care, 2015, 4(2): 172-179. doi: 10.1177/2048872614547690
-
期刊类型引用(5)
1. 赵蕾,魏岚,费晓璐. 血糖间隙对药物保守治疗脑卒中患者症状性颅内出血的预测价值. 国际老年医学杂志. 2024(04): 414-418 . 百度学术
2. 廖青玲. 血清CK-MB、MYO、cTnI、NT-proBNP联合检测在急性心肌梗死早期诊断中应用价值. 黑龙江医学. 2024(15): 1844-1846 . 百度学术
3. 韩佳玉,徐明星. 基于循证理念的延续护理对老年心血管疾病患者介入术后再发主要心血管不良事件的影响. 中国医药导报. 2023(10): 170-173+193 . 百度学术
4. 刘亚楠,张逸,吴慧. 司美格鲁肽对2型糖尿病患者心血管危险因素的影响. 糖尿病新世界. 2023(10): 73-76 . 百度学术
5. 张俊峰,苏绍红. 急性心肌梗死主要不良心血管事件的血清指标预测研究. 实用临床医药杂志. 2023(23): 31-36+42 . 本站查看
其他类型引用(0)