Effects of long non-coding RNA LINC01139 in regulating proliferation, migration and invasion of oral squamous cell carcinoma cisplatin-resistant cells by targeting microRNA-300
-
摘要:目的 探讨长链非编码RNA01139 (LINC01139)调控微小RNA-300(miR-300)对口腔鳞癌顺铂(DDP)耐药细胞(CAL-27/DDP)增殖、迁移和侵袭的影响。方法 采用实时荧光定量聚合酶链反应(qRT-PCR)检测CAL-27/DDP及其亲本细胞株CAL-27中LINC01139和miR-300的表达水平。将CAL-27/DDP分为DDP+si-NC组、DDP+si-LINC01139组、DDP+miR-NC组、DDP+miR-300组、DDP+si-LINC01139+ anti-miR-NC组、DDP+si-LINC01139+anti-miR-300组。采用噻唑兰(MTT)法检测细胞增殖抑制率; Transwell实验检测迁移和侵袭细胞数。采用双荧光素酶报告实验和qRT-PCR确定LINC01139与miR-300的靶向关系。结果 与CAL-27细胞比较, CAL-27/DDP中LINC01139的表达升高, miR-300的表达降低,差异有统计学意义(P<0.05)。与DDP+si-NC组比较,DDP+si-LINC01139组CAL-27/DDP增殖抑制率升高,迁移和侵袭细胞数减少,差异有统计学意义(P<0.05)。与DDP+miR-NC组比较, DDP+miR-300组CAL-27/DDP增殖抑制率升高,迁移和侵袭细胞数减少,差异有统计学意义(P<0.05)。与DDP+si-LINC01139+anti-miR-NC组比较, DDP+si-LINC01139+ anti-miR-300组CAL-27/DDP增殖抑制率降低,迁移和侵袭细胞数增加,差异有统计学意义(P<0.05)。结论 抑制LINC01139可通过上调miR-300抑制CAL-27/DDP的增殖、迁移和侵袭。
-
关键词:
- 长链非编码RNA01139 /
- 微小RNA-300 /
- 口腔鳞癌顺铂耐药细胞 /
- 增殖 /
- 迁移 /
- 侵袭
Abstract:Objective To investigate the effect of long intergenic non-coding RNA LINC01139 (LINC01139) in regulating the proliferation, migration and invasion of oral squamous cell carcinoma cisplatin(DDP)-resistant cells(CAL-27/DDP) by regulating microRNA-300 (miR-300).Methods Real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression levels of LINC01139 and miR-300 in CAL-27/DDP and its parental cell line CAL-27. CAL-27/DDP was divided into DDP+si-NC, DDP+si-LINC01139, DDP+miR-NC, DDP+miR-300, DDP+ si-LINC01139 +anti-miR-NC, DDP+si-LINC01139+anti-miR-300 groups. The methyl thiazolyl tetrazolium (MTT) method was used to detect the cell proliferation inhibition rate; Transwell assay was used to detect the number of migrating and invading cells. The dual luciferase reporting experiment and qRT-PCR were used to detect the targeting relationship between LINC01139 and miR-300.Results Compared with CAL-27 cells, the expression of LINC01139 in CAL-27/DDP was increased, while the expression of miR-300 was decreased (P < 0.05). Compared with the DDP+si-NC group, the proliferation inhibition rate of CAL-27/DDP in the DDP+si-LINC01139 group was increased, and the migrating and invading cells were reduced (P < 0.05). Compared with the DDP+miR-NC group, the proliferation inhibition rate of CAL-27/DDP in the DDP+miR-300 group was increased, and the number of migrating and invading cells was reduced (P < 0.05). Compared with the DDP+ si-LINC01139+anti-miR-NC group, the proliferation inhibition rate of CAL-27/DDP in the DDP+si-LINC01139+anti-miR-300 group was decreased, the migrating and invading cells were increased (P < 0.05).Conclusion Inhibition of LINC01139 inhibits the proliferation, migration and invasion of oral squamous cell carcinoma cisplatin-resistant cells by up-regulating miR-300. -
口腔鳞状细胞癌(OSCC)约占所有头颈部肿瘤的90%, 是全球重要的公共卫生问题[1]。尽管包括外科手术、放化疗在内的治疗策略大大优化,但OSCC患者总体5年生存率仍低于60%[2]。顺铂(DDP)化疗是晚期OSCC患者局部治疗的重要组成部分,可显著提高生存率,但70%~80%的复发患者表现出对DDP的耐药性[3]。长链非编码RNA(lncRNA)是一类内源性非编码RNA, 通过在表观遗传、转录前、转录后水平调控基因表达多种细胞过程中发挥作用。目前,多种lncRNA已被证实可通过抑制细胞增殖和迁移、促进细胞凋亡增加DDP耐药细胞系对DDP的敏感性[4-5]。长链非编码RNA01139(LINC01139)是一种肿瘤相关lncRNA, 肝癌中LINC01139表达上调,敲减LINC01139可抑制肝癌细胞恶性生物学行为[6]。生物信息学分析发现, LINC01139可能与微小RNA-300(miR-300)存在相互作用。研究[7]证实, miR-300-5p高表达可降低卵巢癌细胞的DDP耐药性,但LINC01139是否通过靶向调控miR-300表达影响OSCC细胞的DDP耐药性尚未可知。本研究探讨LINC01139、miR-300对DDP耐药OSCC细胞增殖、迁移和侵袭的影响以及分子机制,以期为OSCC化疗提供有效靶点。
1. 材料与方法
1.1 实验材料
CAL-27细胞购于美国模式培养物保藏中心; DDP(纯度≥99.9%)、噻唑蓝(MTT)试剂盒购于美国Sigma公司; LINC01139小干扰RNA(si-LINC01139) 及其阴性对照(si-NC)、LINC01139过表达载体(pcDNA-LINC01139)、质粒空载体(pcDNA)、miR-300模拟物(miR-300 mimics)及其阴性对照(miR-NC)、miR-300抑制物(anti-miR-300)及其阴性对照(anti-miR-NC)和聚合酶链反应(PCR)引物均由上海吉玛制药公司提供; LipofectamineTM 2000购自美国Invitrogen公司; Transwell小室、基质胶购于美国BD公司; 兔源细胞周期素D1(CyclinD1)、p21、基质金属蛋白酶-2(MMP-2)、基质金属蛋白酶-9(MMP-9)、甘油醛-3-磷酸脱氢酶(GAPDH)抗体以及山羊抗兔二抗购于上海艾博抗公司。
1.2 细胞培养、药物处理
参照文献[8]建立口腔鳞癌DDP耐药细胞株(CAL-27/DDP)。将对数期CAL-27细胞、CAL-27/DDP分别接种96孔板,当细胞贴壁后,分别加入终浓度为0.125、0.25、0.5、1、2、4、8 μg/mL的DDP并干预处理48 h, 采用MTT实验检测细胞增殖抑制率。
1.3 实验分组
将对数期CAL-27/DDP分为DDP+si-NC(转染si-NC)组、DDP+si-LINC01139(转染si-LINC01139)组、DDP+miR-NC(转染miR-NC)组、DDP+miR-300(转染miR-300 mimics)组、DDP+ si-LINC01139+anti-miR-NC(转染si-LINC01139和anti-miR-NC)组、DDP+si-LINC01139+anti-miR-300组(转染si-LINC01139和anti-miR-300)。以上各组在转染后均采用0.25 μg/mL的DDP干预处理48 h。将pcDNA-LINC01139、pcDNA、si-LINC01139、si-NC转染至细胞中,记为pcDNA-LINC01139组、pcDNA组、si-LINC01139组、si-NC组,使用实时荧光定量PCR(qRT-PCR)检测miR-300表达情况。细胞转染参照脂质体转染试剂LipofectamineTM 2000说明书进行。
1.4 qRT-PCR检测LINC01139和miR-300表达
收集CAL-27细胞和各组CAL-27/DDP, 以Trizol法提取细胞总RNA, 采用逆转录试剂盒合成cDNA, 采用SYBR Green Mix试剂进行qRT-PCR反应[9]。采用2-△△Ct法检测LINC01139和miR-300表达水平。
1.5 MTT法检测细胞增殖抑制率
收集各组CAL-27/DDP细胞,按照1×104个/孔接种到96孔板, 24 h后每孔加入20 μL的MTT试剂,培养箱孵育4 h, 弃去上清液,加入150 μL的DMSO, 振荡10 min溶解后,酶标仪测定490 nm波长处的光密度(OD)值[10-11]。
1.6 Transwell实验检测细胞迁移和侵袭
细胞迁移: 收集各组CAL-27/DDP细胞,采用无血清DMEM将培养基调整为5×104个/mL的单细胞悬液。取200 μL细胞悬液、500 μL含10%胎牛血清的DMEM培养基分别加入Transwell上室、24孔板下室。细胞培养箱孵育24 h, 棉拭子擦去上室内未穿膜细胞,甲醇固定20 min, 结晶紫染色10 min, 倒置随机选择5个视野计数、拍照,取均值[12-13]。细胞侵袭: 采用均匀包被基质胶的Transwell小室,实验前30 min水化后备用。
1.7 Western blot检测CyclinD1、p21、MMP-2和MMP-9蛋白表达
细胞裂解缓冲液提取各组CAL-27/DDP总蛋白, Nanodrop 2000测定蛋白浓度。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分离蛋白,并转移到聚偏二氟乙烯膜。将膜置于5%的脱脂牛奶中封闭后,稀释的一抗溶液室温孵育膜2 h, 稀释的二抗溶液室温孵育膜2 h, 增强型化学发光显色试剂盒暗室显色。目的蛋白表达水平采用灰度值与内参GAPDH灰度值比值表示。
1.8 双荧光素酶报告基因实验
将野生型/突变型(WT/MUT)LINC01139序列连接到PmirGLO双荧光素酶表达载体以构建WT/MUT-LINC01139, 该步骤由北京华大基因公司完成。利用Lipofectamine 2000将WT-LINC01139、MUT-LINC01139分别与miR-300(miR-300 mimics)、miR-NC共转染至CAL-27/DDP, 转染48 h收集细胞,根据双荧光素酶检测试剂盒进行荧光素酶活性测定。同时将pcDNA、pcDNA-LINC01139、si-NC、si-LINC01139分别转染CAL-27/DDP, 48 h后测定各组细胞miR-300表达水平。
1.9 统计学分析
每组设置3个平行实验,重复3次,所有数据均以均数±标准差表示。采用SPSS 17.0软件进行统计分析, 2组间比较采用t检验,多组间比较采用单因素方差分析,进一步组内两两比较采用SNK-q检验。P<0.05为差异有统计学意义。
2. 结果
2.1 DDP对CAL-27细胞和CAL-27/DDP增殖抑制率的影响
与CAL-27比较,同一DDP浓度对CAL-27/DDP的抑制率较低, CAL-27/DDP的IC50值升高,差异有统计学意义(P<0.05), 见表 1。
表 1 顺铂对CAL-27细胞和CAL-27/DDP增殖抑制率的影响(x±s)细胞 DDP浓度 IC50/(μg/mL) 0.125 μg/mL 0.25 μg/mL 0.5 μg/mL 1 μg/mL 2 μg/mL 4 μg/mL 8 μg/mL CAL-27(n=9) 11.32±1.14 22.45±2.27 34.62±3.55 45.86±4.31 59.33±5.12 73.21±7.56 86.22±8.13 1.17±0.19 CAL-27/DDP(n=9) 3.41±0.35* 7.11±0.72* 13.24±1.25* 19.83±1.74* 31.02±3.17* 39.65±3.88* 53.14±5.28* 6.65±0.51* CAL-27: 口腔鳞癌细胞; CAL-27/DDP: 口腔鳞癌顺铂耐药细胞; DDP: 顺铂。与CAL-27细胞比较, * P<0.05。 2.2 CAL-27、CAL-27/DDP中LINC01139和miR-300的表达
与CAL-27比较, CAL-27/DDP中LINC01139的表达升高, miR-300的表达降低,差异有统计学意义(P<0.05), 见表 2。
表 2 LINC01139和miR-300在CAL-27细胞和CAL-27/DDP细胞中的表达(x±s)细胞 LINC01139 miR-300 CAL-27(n=9) 1.00±0.06 1.00±0.05 CAL-27/DDP(n=9) 2.93±0.27* 0.34±0.03* LINC01139: 长链非编码RNA01139; miR-300: 微小RNA-300; CAL-27: 口腔鳞癌细胞; CAL-27/DDP: 口腔鳞癌顺铂耐药细胞。与CAL-27细胞比较, * P<0.05。 2.3 抑制LINC01139表达联合DDP(0.25 μg/mL)对CAL-27/DDP细胞增殖、迁移和侵袭的影响
与DDP+si-NC组比较, DDP+si-LINC01139组CAL-27/DDP中LINC01139表达降低,增殖抑制率和p21蛋白表达升高,迁移和侵袭细胞数、CyclinD1、MMP-2和MMP-9蛋白表达降低,差异有统计学意义(P<0.05), 见表 3、图 1。
表 3 抑制LINC01139表达联合DDP对CAL-27/DDP细胞增殖、迁移和侵袭的影响(x±s)组别 LINC01139 抑制率/% 迁移细胞数/个 侵袭细胞数/个 CyclinD1蛋白 p21蛋白 MMP-2蛋白 MMP-9蛋白 DDP+si-NC组(n=9) 1.00±0.08 6.41±0.63 105.23±10.22 88.14±8.42 0.61±0.06 0.33±0.03 0.72±0.07 0.66±0.06 DDP+si-LINC01139组(n=9) 0.51±0.05* 42.15±4.13* 56.39±5.21* 41.65±4.55* 0.20±0.02* 0.79±0.07* 0.30±0.03* 0.27±0.03* LINC01139: 长链非编码RNA01139; CyclinD1: 兔源细胞周期素D1; MMP-2: 基质金属蛋白酶-2; MMP-9: 基质金属蛋白酶-9。与DDP+si-NC组比较, * P<0.05。 2.4 miR-300过表达联合DDP(0.25 μg/mL)对CAL-27/DDP细胞增殖、迁移和侵袭的影响
与DDP+miR-NC组比较, DDP+miR-300组CAL-27/DDP中miR-300表达显著升高,增殖抑制率和p21蛋白表达升高,迁移和侵袭细胞数、CyclinD1、MMP-2和MMP-9蛋白表达降低,差异有统计学意义(P<0.05), 见表 4和图 2。
表 4 miR-300过表达联合DDP对CAL-27/DDP细胞增殖、迁移和侵袭的影响(x±s)组别 miR-300 抑制率/% 迁移细胞数/个 侵袭细胞数/个 CyclinD1蛋白 p21蛋白 MMP-2蛋白 MMP-9蛋白 DDP+miR-NC组(n=9) 1.00±0.06 7.12±0.77 101.25±9.84 86.14±8.63 0.63±0.06 0.32±0.03 0.71±0.07 0.68±0.06 DDP+miR-300组(n=9) 2.57±0.24* 35.48±3.55* 60.55±6.31* 53.47±5.33* 0.28±0.03* 0.75±0.07* 0.37±0.03* 0.30±0.03* miR-300: 微小RNA-300; CyclinD1: 兔源细胞周期素D1; MMP-2: 基质金属蛋白酶-2; MMP-9: 基质金属蛋白酶-9。与DDP+miR-NC组比较, * P<0.05。 2.5 LINC01139靶向调控miR-300的表达
靶基因预测工具LncBase Predicted v. 2分析显示, LINC01139与miR-300存在特异性结合的核苷酸序列,见图 3。miR-300 mimics和WT-LINC01139共转染CAL-27/DDP细胞荧光素酶活性较miR-NC和WT-LINC01139共转染细胞降低,差异有统计学意义(P<0.05); miR-300 mimics和MUT-LINC01139共转染CAL-27/DDP细胞荧光素酶活性与miR-NC和MUT-LINC01139共转染细胞比较,差异无统计学意义(P>0.05), 见表 5。pcDNA-LINC01139组CAL-27/DDP细胞miR-300表达较pcDNA组降低, si-LINC01139组CAL-27/DDP细胞miR-300表达较si-NC组升高,差异有统计学意义(P<0.05), 见表 6。
表 5 双荧光素酶报告实验(x±s)组别 WT-LINC01139 MUT-LINC01139 miR-NC组(n=9) 1.00±0.06 1.02±0.08 miR-300组(n=9) 0.57±0.05* 0.99±0.07 与miR-NC组比较, * P<0.05。 表 6 LINC01139调控miR-300的表达(x±s)组别 miR-300 pcDNA组(n=9) 1.00±0.07 pcDNA-LINC01139组(n=9) 0.53±0.05* si-NC组(n=9) 1.02±0.06 si-LINC01139组(n=9) 2.68±0.27# F 381.236 P <0.001 与pcDNA组比较, * P<0.05; 与si-NC组比较, #P<0.05。 2.6 干扰miR-300表达逆转了抑制LINC01139表达对CAL-27/DDP细胞DDP耐药性的作用
与DDP+si-NC组比较, DDP+si-LINC01139组CAL-27/DDP中miR-300表达显著升高,增殖抑制率、p21蛋白表达显著升高,迁移和侵袭细胞数、CyclinD1、MMP-2和MMP-9蛋白表达显著降低; 与DDP+si-LINC01139+anti-miR-NC组比较, DDP+si-LINC01139 +anti-miR-300组CAL-27/DDP中miR-300表达显著降低,增殖抑制率、p21蛋白表达显著降低,迁移和侵袭细胞数、CyclinD1、MMP-2和MMP-9蛋白表达显著升高(P<0.05)。见表 7和图 4。
表 7 干扰miR-300表达逆转了抑制LINC01139表达对CAL-27/DDP细胞DDP耐药性的作用(x±s)组别 miR-300 抑制率/% 迁移细胞数/个 侵袭细胞数/个 CyclinD1蛋白 p21蛋白 MMP-2蛋白 MMP-9蛋白 DDP+si-NC组(n=9) 1.00±0.08 7.06±0.71 106.24±9.56 85.14±8.36 0.62±0.06 0.31±0.03 0.73±0.07 0.67±0.06 DDP+si-LINC01139组(n=9) 2.84±0.27* 43.25±4.31* 57.14±5.33* 43.51±4.33* 0.22±0.03* 0.77±0.07* 0.33±0.03* 0.29±0.03* DDP+si-LINC01139+anti-miR-NC组(n=9) 2.86±0.28 44.69±4.52 55.86±5.52 42.69±4.74 0.21±0.02 0.78±0.06 0.32±0.03 0.28±0.02 DDP+si-LINC01139+anti-miR-300组(n=9) 1.53±0.15# 21.36±2.54# 83.47±8.35# 69.71±6.33# 0.51±0.05# 0.40±0.04# 0.64±0.06# 0.56±0.05# miR-300: 微小RNA-300; CyclinD1: 兔源细胞周期素D1; MMP-2: 基质金属蛋白酶-2; MMP-9: 基质金属蛋白酶-9。
与DDP+si-NC组比较, * P<0.05; 与DDP+si-LINC01139+anti-miR-NC组比较, #P<0.05。3. 讨论
近年来研究[15]发现, lncRNA在OSCC耐药过程中起着重要的作用。lncRNA浆细胞瘤转化迁移基因1( PVT1 )在DDP耐药组织和细胞系中经常被上调,并且与较差的总体生存密切相关。在DDP耐药OSCC细胞中同源框基因11反义RNA( HOXA11-AS )亦表达上调,敲减 HOXA11-AS 能够降低DDP耐药OSCC细胞的增殖,增加DDP诱导的细胞毒性,抑制小鼠移植瘤的生长,为改善OSCC化疗提供了潜在靶点[16]。干扰HOX转录反义RNA(HOTAIR)表达可抑制OSCC细胞自噬,促进细胞凋亡,增加对DDP的敏感性[17]。本研究发现, OSCC的DDP耐药细胞株CAL-27/DDP中LINC01139表达升高,提示LINC01139异常表达可能与OSCC DDP耐药有关。功能分析发现,抑制LINC01139表达可降低CAL-27/DDP的增殖、迁移和侵袭能力。p21是细胞周期的负调控因子,通过与CyclinD1、细胞周期依赖性激酶(CDKs)、CyclinD1/CDKs复合物结合导致细胞周期阻滞,阻断细胞增殖过程[18]。MMP-2和MMP-9是MMPs家族的重要成员,几乎能够降解细胞外基质中所有蛋白成分,改变细胞间黏附,破坏肿瘤细胞侵袭转移的组织学屏障[19]。本研究发现,抑制LINC01139表达后CAL-27/DDP中CyclinD1、MMP-2和MMP-9表达水平降低, p21表达水平升高,提示LINC01139在CAL-27/DDP增殖、迁移和侵袭中发挥促进作用。
lncRNA与miRNA的相互作用是调控肿瘤生物学功能的重要机制[20-21]。本研究发现miR-300为LINC01139下游候选靶点。miR-300的异常表达已被报道参与OSCC的发生和发展, OSCC患者miR-300水平降低,过表达miR-300可抑制OSCC细胞的增殖、侵袭和上皮间质转化过程[22]。miR-300通过靶向淋巴样增强子结合因子1调节肝细胞癌的生长和转移[23]。lncRNA牛磺酸上调基因1(TUG1)通过负调控miR-300促进胆囊癌细胞增殖和转移[24]。本研究显示, miR-300在CAL-27/DDP中表达降低,过表达miR-300可促进CAL-27/DDP的增殖、迁移和侵袭,促进p21表达,抑制CyclinD1、MMP-2和MMP-9表达水平。进一步实验显示, LINC01139对miR-300表达具有靶向负调控作用,且干扰miR-300表达能够逆转抑制LINC01139表达对CAL-27/DDP细胞的增殖、迁移和侵袭抑制作用。因此, LINC01139/miR-300分子轴在OSCC的DDP耐药中发挥重要作用。
总之,本研究发现LINC01139能够促进OSCC的DDP耐药性,抑制LINC01139可通过上调miR-300达到抑制CAL-27/DDP细胞增殖、迁移和侵袭的目的,为改善OSCC化疗提供了潜在靶点。
-
表 1 顺铂对CAL-27细胞和CAL-27/DDP增殖抑制率的影响(x±s)
细胞 DDP浓度 IC50/(μg/mL) 0.125 μg/mL 0.25 μg/mL 0.5 μg/mL 1 μg/mL 2 μg/mL 4 μg/mL 8 μg/mL CAL-27(n=9) 11.32±1.14 22.45±2.27 34.62±3.55 45.86±4.31 59.33±5.12 73.21±7.56 86.22±8.13 1.17±0.19 CAL-27/DDP(n=9) 3.41±0.35* 7.11±0.72* 13.24±1.25* 19.83±1.74* 31.02±3.17* 39.65±3.88* 53.14±5.28* 6.65±0.51* CAL-27: 口腔鳞癌细胞; CAL-27/DDP: 口腔鳞癌顺铂耐药细胞; DDP: 顺铂。与CAL-27细胞比较, * P<0.05。 表 2 LINC01139和miR-300在CAL-27细胞和CAL-27/DDP细胞中的表达(x±s)
细胞 LINC01139 miR-300 CAL-27(n=9) 1.00±0.06 1.00±0.05 CAL-27/DDP(n=9) 2.93±0.27* 0.34±0.03* LINC01139: 长链非编码RNA01139; miR-300: 微小RNA-300; CAL-27: 口腔鳞癌细胞; CAL-27/DDP: 口腔鳞癌顺铂耐药细胞。与CAL-27细胞比较, * P<0.05。 表 3 抑制LINC01139表达联合DDP对CAL-27/DDP细胞增殖、迁移和侵袭的影响(x±s)
组别 LINC01139 抑制率/% 迁移细胞数/个 侵袭细胞数/个 CyclinD1蛋白 p21蛋白 MMP-2蛋白 MMP-9蛋白 DDP+si-NC组(n=9) 1.00±0.08 6.41±0.63 105.23±10.22 88.14±8.42 0.61±0.06 0.33±0.03 0.72±0.07 0.66±0.06 DDP+si-LINC01139组(n=9) 0.51±0.05* 42.15±4.13* 56.39±5.21* 41.65±4.55* 0.20±0.02* 0.79±0.07* 0.30±0.03* 0.27±0.03* LINC01139: 长链非编码RNA01139; CyclinD1: 兔源细胞周期素D1; MMP-2: 基质金属蛋白酶-2; MMP-9: 基质金属蛋白酶-9。与DDP+si-NC组比较, * P<0.05。 表 4 miR-300过表达联合DDP对CAL-27/DDP细胞增殖、迁移和侵袭的影响(x±s)
组别 miR-300 抑制率/% 迁移细胞数/个 侵袭细胞数/个 CyclinD1蛋白 p21蛋白 MMP-2蛋白 MMP-9蛋白 DDP+miR-NC组(n=9) 1.00±0.06 7.12±0.77 101.25±9.84 86.14±8.63 0.63±0.06 0.32±0.03 0.71±0.07 0.68±0.06 DDP+miR-300组(n=9) 2.57±0.24* 35.48±3.55* 60.55±6.31* 53.47±5.33* 0.28±0.03* 0.75±0.07* 0.37±0.03* 0.30±0.03* miR-300: 微小RNA-300; CyclinD1: 兔源细胞周期素D1; MMP-2: 基质金属蛋白酶-2; MMP-9: 基质金属蛋白酶-9。与DDP+miR-NC组比较, * P<0.05。 表 5 双荧光素酶报告实验(x±s)
组别 WT-LINC01139 MUT-LINC01139 miR-NC组(n=9) 1.00±0.06 1.02±0.08 miR-300组(n=9) 0.57±0.05* 0.99±0.07 与miR-NC组比较, * P<0.05。 表 6 LINC01139调控miR-300的表达(x±s)
组别 miR-300 pcDNA组(n=9) 1.00±0.07 pcDNA-LINC01139组(n=9) 0.53±0.05* si-NC组(n=9) 1.02±0.06 si-LINC01139组(n=9) 2.68±0.27# F 381.236 P <0.001 与pcDNA组比较, * P<0.05; 与si-NC组比较, #P<0.05。 表 7 干扰miR-300表达逆转了抑制LINC01139表达对CAL-27/DDP细胞DDP耐药性的作用(x±s)
组别 miR-300 抑制率/% 迁移细胞数/个 侵袭细胞数/个 CyclinD1蛋白 p21蛋白 MMP-2蛋白 MMP-9蛋白 DDP+si-NC组(n=9) 1.00±0.08 7.06±0.71 106.24±9.56 85.14±8.36 0.62±0.06 0.31±0.03 0.73±0.07 0.67±0.06 DDP+si-LINC01139组(n=9) 2.84±0.27* 43.25±4.31* 57.14±5.33* 43.51±4.33* 0.22±0.03* 0.77±0.07* 0.33±0.03* 0.29±0.03* DDP+si-LINC01139+anti-miR-NC组(n=9) 2.86±0.28 44.69±4.52 55.86±5.52 42.69±4.74 0.21±0.02 0.78±0.06 0.32±0.03 0.28±0.02 DDP+si-LINC01139+anti-miR-300组(n=9) 1.53±0.15# 21.36±2.54# 83.47±8.35# 69.71±6.33# 0.51±0.05# 0.40±0.04# 0.64±0.06# 0.56±0.05# miR-300: 微小RNA-300; CyclinD1: 兔源细胞周期素D1; MMP-2: 基质金属蛋白酶-2; MMP-9: 基质金属蛋白酶-9。
与DDP+si-NC组比较, * P<0.05; 与DDP+si-LINC01139+anti-miR-NC组比较, #P<0.05。 -
[1] D'SOUZA S, ADDEPALLI V. Preventive measures in oral cancer: an overview[J]. Biomed Pharmacother, 2018, 107: 72-80. doi: 10.1016/j.biopha.2018.07.114
[2] SASAHIRA T, KIRITA T, KUNIYASU H. Update of molecular pathobiology in oral cancer: a review[J]. Int J Clin Oncol, 2014, 19(3): 431-436. doi: 10.1007/s10147-014-0684-4
[3] ZHOU X, REN Y, LIU A Q, et al. WP1066 sensitizes oral squamous cell carcinoma cells to cisplatin by targeting STAT3/miR-21 axis[J]. Sci Rep, 2014, 4: 7461.
[4] FANG Z, ZHAO J F, XIE W H, et al. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression[J]. Cancer Med, 2017, 6(12): 2897-2908. doi: 10.1002/cam4.1253
[5] WANG J, LI L Q, WU K, et al. Knockdown of long noncoding RNA urothelial cancer-associated 1 enhances cisplatin chemosensitivity in tongue squamous cell carcinoma cells[J]. Die Pharmazie, 2016, 71(10): 598-602.
[6] LI Z B, CHU H T, JIA M, et al. Long noncoding RNA LINC01139 promotes the progression of hepatocellular carcinoma by upregulating MYBL2 via competitively binding to miR-30 family[J]. Biochem Biophys Res Commun, 2020, 525(3): 581-588. doi: 10.1016/j.bbrc.2020.02.116
[7] LIN M, XIA B R, QIN L, et al. S100A7 regulates ovarian cancer cell metastasis and chemoresistance through MAPK signaling and is targeted by miR-330-5p[J]. DNA Cell Biol, 2018, 37(5): 491-500. doi: 10.1089/dna.2017.3953
[8] 姜慧, 张桐菲, 杨鹤, 等. 人舌鳞状细胞癌顺铂耐药细胞株CAL-27/DDP的建立及其生物学评价[J]. 吉林大学学报: 医学版, 2016, 42(3): 506-511, 后插3. https://www.cnki.com.cn/Article/CJFDTOTAL-BQEB201603018.htm [9] 贾静, 吴建, 金媛. lncRNA UNC5B-AS1靶向miR-300影响非小细胞肺癌细胞增殖、迁移和侵袭[J]. 临床肺科杂志, 2021, 26(7): 1069-1075. Z doi: 10.3969/j.issn.1009-6663.2021.07.022 [10] 罗健玮, 黄泓轲, 胡艳丽. ILF3-AS1干扰通过促进miR-204/IL-6R影响宫颈癌细胞增殖、迁移和侵袭[J]. 免疫学杂志, 2021, 37(8): 710-718. https://www.cnki.com.cn/Article/CJFDTOTAL-MYXZ202108013.htm [11] 李锋, 龚继承, 杜经柱, 等. lncRNA FGD5-AS1调控miR-761影响骨肉瘤细胞增殖、迁移和凋亡的机制研究[J]. 实用骨科杂志, 2021, 27(3): 228-234. https://www.cnki.com.cn/Article/CJFDTOTAL-SGKZ202103009.htm [12] 张丽柯, 汪建光, 景东帅, 等. LINC00519通过miR-876-3p/HMGA1轴调控胃癌细胞的增殖、凋亡、迁移和侵袭[J]. 中国肿瘤生物治疗杂志, 2021, 28(6): 574-581. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLSW202106004.htm [13] 张越, 吴雷, 刘继光. Lnc RNA KCNQ1OT1靶向miR-506-3p调控舌鳞状细胞癌细胞增殖、侵袭和迁移的机制研究[J]. 口腔医学, 2021, 41(3): 204-209. https://www.cnki.com.cn/Article/CJFDTOTAL-KQYX202103003.htm [14] 王东, 王珍, 刘岩. miR-384靶向HTRA1影响瘢痕疙瘩成纤维细胞的增殖和凋亡[J]. 中国麻风皮肤病杂志, 2021, 37(4): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-MALA202104004.htm [15] WANG F, JI X, WANG J J, et al. LncRNA PVT1 enhances proliferation and cisplatin resistance via regulating miR-194-5p/HIF1a axis in oral squamous cell carcinoma[J]. Oncotargets Ther, 2020, 13: 243-252. doi: 10.2147/OTT.S232405
[16] WANG X Y, LI H, SHI J. LncRNA HOXA11-AS promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by suppression of miR-214-3p expression[J]. Biomed Res Int, 2019, 2019: 8645153.
[17] WANG X, LIU W, WANG P Y, et al. RNA interference of long noncoding RNA HOTAIR suppresses autophagy and promotes apoptosis and sensitivity to cisplatin in oral squamous cell carcinoma[J]. J Oral Pathol Med, 2018, 47(10): 930-937. doi: 10.1111/jop.12769
[18] LUO F, ZHOU Z Y, CAI J, et al. DUB3 facilitates growth and inhibits apoptosis through enhancing expression of EZH2 in oral squamous cell carcinoma[J]. Oncotargets Ther, 2020, 13: 1447-1460. doi: 10.2147/OTT.S230577
[19] 朱玲玲, 张洋, 窦勤玲, 等. 槲皮素对U937细胞迁移和侵袭能力及MMP-2, MMP-9表达的影响[J]. 中国实验方剂学杂志, 2018, 24(16): 146-151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201816022.htm [20] MA W Q, CHEN J, FANG W, et al. LncRNA INHBA-AS1 promotes cell growth, migration, and invasion of oral squamous cell carcinoma by sponging miR-143-3p[J]. Eur Rev Med Pharmacol Sci, 2020, 24(4): 1821-1828.
[21] TAO D T, ZHANG Z X, LIU X, et al. LncRNA HOTAIR promotes the invasion and metastasis of oral squamous cell carcinoma through metastasis-associated gene 2[J]. Mol Carcinog, 2020, 59(4): 353-364. doi: 10.1002/mc.23159
[22] KANG Y Y, ZHANG Y, SUN Y, et al. microRNA-300 suppresses metastasis of oral squamous cell carcinoma by inhibiting epithelial-to-mesenchymal transition[J]. Oncotargets Ther, 2018, 11: 5657-5666. doi: 10.2147/OTT.S173236
[23] CHEN Y F, GUO Y Y, LI Y W, et al. miR-300 regulates tumor proliferation and metastasis by targeting lymphoid enhancer-binding factor 1 in hepatocellular carcinoma[J]. Int J Oncol, 2019, 54(4): 1282-1294.
[24] MA F, WANG S H, CAI Q, et al. Long non-coding RNA TUG1 promotes cell proliferation and metastasis by negatively regulating miR-300 in gallbladder carcinoma[J]. Biomed Pharmacother, 2017, 88: 863-869. doi: 10.1016/j.biopha.2017.01.150
-
期刊类型引用(2)
1. 黄梦钰,王雅梅. 非编码RNA在口腔鳞状细胞癌耐药机制中的研究进展. 医学研究杂志. 2024(05): 22-26 . 百度学术
2. 王军成,兰彦平,赵岳阳,蒯涛,马东明,李敏. LINK-A RNAi慢病毒载体构建及其抑制U251胶质瘤细胞增殖的研究. 宁夏医学杂志. 2023(07): 577-580+572 . 百度学术
其他类型引用(0)