Research progress of interferon-gamma-dependent immune response in tuberculous pleuritis
-
摘要: 结核性胸膜炎(TP)是肺外结核的常见表现形式, 通常由结核分枝杆菌(MTB)感染胸膜所致,胸膜腔中会积累大量的免疫活性细胞并伴随细胞因子的释放,其中最为关键的是γ干扰素(IFN-γ)。IFN-γ既是宿主保护性免疫细胞分泌的重要因子,也是抗MTB免疫反应中特有的促炎性细胞因子环境标志物。本文对IFN-γ依赖性免疫应答在TP发病机制、诊断及治疗监测中的研究进展进行综述,以期为TP的诊治提供新的思路。Abstract: Tuberculous pleuritis (TP) is a common manifestation of extrapulmonary tuberculosis, which is usually caused by Mycobacterium tuberculosis(MTB) infection of the pleura. A large number of immunocompetent cells are accumulated in the pleural cavity, accompanied by the release of cytokines, among which interferon-gamma (IFN-γ) is the most important. IFN-γ is not only an important factor secreted by the host protective immune cells, but also a specific environmental marker of pro-inflammatory cytokines in anti-MTB immune response. This article reviewed the research progress of IFN-γ-dependent immune response in the pathogenesis, diagnosis and therapeutic monitoring of TP in order to provide new ideas for the diagnosis and treatment of TP.
-
新生儿胎粪吸入综合征(MAS)是新生儿常见并发症,由胎儿宫内窘迫、胎粪吸入呼吸道、肺泡机械性阻塞等因素导致,具有较高病死率[1-2]。据统计[3], MAS患病率为1.2%~2.3%, 病死率占7.5%~15.0%, 存活者多伴中枢神经系统后遗症、颅内出血等并发症,预后欠佳。目前,临床治疗MAS尚无统一标准性方案,以呼吸机、高浓度氧疗、高频通气等方式为主,对MAS治疗有一定效果,但呼吸机因操作复杂、并发症多等,且呼吸机使用难以逆转肺表面活性物质(PS)失活现象,影响患儿恢复效果[4-5]。PS是肺泡Ⅱ型上皮细胞分泌脂蛋白,具降低肺泡表面张力、改善肺氧合能力作用。因此有研究[6]提出,对MAS患儿采取PS治疗,以纠正广泛性肺泡萎缩、PS失活表现。本研究对本院2018年1月—2019年3月收治的200例MAS患儿采取PS联合呼吸机治疗,现将结果报告如下。
1. 资料与方法
1.1 一般资料
选取本院2018年1月—2019年3月收治的200例MAS患儿,按数字随机表法分为2组。对照组100例,男53例,女47例; 胎龄38~41周,平均(39.50±0.41)周; 出生体质量2.07~4.01 kg, 平均(2.94±0.43) kg; 出生至发病时间2~10 h, 平均(5.41±0.42) h; 新生儿1 min Apgar评分(6.84±0.35)分。观察组100例,男55例,女45例; 胎龄38~42周,平均(39.51±0.42)周; 出生体质量2.05~4.02 kg, 平均(2.95±0.42) kg; 出生至发病时间3~10 h, 平均(5.45±0.40) h; 新生儿1 min Apgar评分(6.85±0.35)分。2组患儿基线资料比较无显著差异(P>0.05), 可进行比较。纳入标准: ①患儿羊水被胎粪污染、气管内吸出胎粪污染羊水,经临床表现、影像学技术等综合检查,与《实用儿科学》[7]中MAS诊断标准相符; ②符合《新生儿机械通气治疗学》[8]中呼吸机治疗标准; ③患儿家长或法定监护人知情研究,签署同意书; ④研究内容符合医学伦理委员会审批标准。排除标准: ①出生体质量 < 2.0 kg; ②出生至发病时间>12 h; ③出生10 min Apgar评分 < 3分; ④先天性畸形、血液系统疾病或先天性心脏病者; ⑤预计生存时间 < 3个月; ⑥中途退出研究者。
1.2 治疗方法
2组患儿入院常规治疗,常规保暖、祛痰、清理呼吸道分泌物、抗生素预防感染、营养能量供给、心功能支持、维持水电解质平衡。对照组患儿在常规治疗基础上接受呼吸机治疗,使用Stephanie型呼吸机(德国斯蒂芬公司生产),设置压力控制、同步间歇指令通气模式,呼吸频率20~50次/min, 吸气时间0.4~0.5 s, 吸入气氧浓度(FiO2)0.5~0.8, 平均气道压(MAP)10~17 cmH2O, 呼吸峰压18~25 cmH2O, 呼吸末正压3~5 cmH2O, 同时依据经皮血氧饱和度(SaO2)调整呼吸机参数。观察组联合呼吸机与PS治疗,呼吸机治疗同对照组, PS治疗如下。取外源性PS(国药准字H20052128, 华润双鹤药业股份有限公司)一次性给药,剂量200 mg/kg, 先将药物复温,取仰卧位,吸尽呼吸道内分泌物,清洁消毒,气管内注入,取5 mL注射器抽取PS, 于气管导管内穿刺,药液匀速注入肺内,使用气囊加压给氧,于肺内充分弥散,维持SaO2≥90%, 给药6~8 h内不得吸痰。
1.3 观察指标
① 肺氧合功能: 氧合指数(OI); ②血气指标: 动脉血氧分压[p(O2)]、动脉血二氧化碳分压[p(CO2)]; ③呼吸机参数: MAP、FiO2及上机时间; ④统计2组患儿治疗并发症,包括呼吸机相关性肺炎、缺氧缺血性脑病、肺气漏等。
1.4 统计学方法
采用SPSS 23.0统计学软件包对研究数据进行处理。变量资料采用(x±s)表示,行t检验; 无序分类资料采用百分比表示,采取χ2检验; 以P < 0.05为差异有统计学意义。
2. 结果
2.1 2组治疗前后肺氧合功能比较
治疗前, 2组OI比较无显著差异(P>0.05); 2组治疗12、24 h OI较治疗前下降,观察组较对照组下降更显著,差异有统计学意义(P < 0.05), 见表 1。
表 1 2组治疗前后氧合指数比较(x±s)组别 治疗前 治疗12 h 治疗24 h 观察组(n=100) 22.10±1.96 14.28±1.41*# 11.05±1.29*# 对照组(n=100) 22.08±1.95 18.95±1.52* 15.96±1.31* 与治疗前比较, *P < 0.05; 与对照组比较, #P < 0.05。 2.2 2组血气分析指标比较
治疗前, 2组血气分析指标比较无显著差异(P>0.05); 治疗12、24 h后,血气分析指标较治疗前改善,且观察组较对照组改善更显著(P < 0.05), 见表 2。
表 2 2组血气分析指标比较(x±s)mmHg 组别 p(CO2) p(O2) 治疗前 治疗12 h 治疗24 h 治疗前 治疗12 h 治疗24 h 观察组(n=100) 60.05±2.96 47.04±3.15*# 38.96±3.05*# 45.21±7.15 64.27±6.96*# 78.41±7.01*# 对照组(n=100) 59.96±2.84 53.41±3.08* 49.24±3.08* 45.30±7.16 54.04±6.98* 62.75±7.00* p(O2): 动脉血氧分压; p(CO2): 动脉血二氧化碳分压。与治疗前比较, *P < 0.05; 与对照组比较, #P < 0.05 2.3 2组治疗前后呼吸机参数比较
2组治疗前MAP、FiO2比较无显著差异(P>0.05); 治疗12、24 h MAP、FiO2下降,观察组较对照组下降更显著,差异有统计学意义(P < 0.05), 观察组上机时间短于对照组,差异有统计学意义(P < 0.05), 见表 3。
表 3 2组治疗前后呼吸机参数比较(x±s)组别 MAP/cmH2O FiO2 上机时间/h 治疗前 治疗12 h 治疗24 h 治疗前 治疗12 h 治疗24 h 对照组(n=100) 17.28±1.64 16.96±1.10* 15.05±1.51* 0.55±0.11 0.50±0.11* 0.46±0.12* 85.46±24.08 观察组(n=100) 17.30±1.65 14.36±1.05*# 12.15±1.48*# 0.56±0.12 0.42±0.10*# 0.31±0.10*# 42.05±9.63# FiO2: 吸入气氧浓度; MAP: 平均气道压。与治疗前比较, *P < 0.05; 与对照组比较, #P < 0.05。 2.4 2组并发症及病死率比较
观察组呼吸机相关性肺炎、肺气漏发生率及病死率均低于对照组,差异有统计学意义(P < 0.05), 见表 4。
表 4 2组并发症及病死率比较[n(%)]组别 呼吸机相关性肺炎 肺气漏 缺氧缺血性脑病 死亡 观察组(n=100) 5(5.00)* 7(7.00)* 8(8.00) 2(2.00)* 对照组(n=100) 16(16.00) 21(21.00) 11(11.00) 13(13.00) 与对照组比较, *P < 0.05。 3. 讨论
MAS是因胎儿宫内吸入混有胎粪羊水,导致小气道机械性梗阻,在吸入12~24 h刺激小气道,引起肺部高炎症反应、肺间质水肿及气道完全或不完全梗阻。呼吸机是治疗MAS的常用手段,可有效纠正机体缺氧、酸中毒状态,增加肺泡面积、提高肺顺应性,减少肺内分流,改善呼吸道塌陷,减少呼吸阻力,促使肺通气功能改善[9]。但MAS患儿在呼吸机治疗期间,会损伤气道黏膜,促使细菌迁移及繁殖,增高呼吸机相关性肺炎、肺气漏等并发症发生率,因此联合其他方式成为当前临床研究重点。
MAS患儿多存在PS灭活现象,因胎粪中溶蛋白酶、磷脂、游离脂肪酸等物质使PS灭活,造成继发性PS缺乏,肺泡萎陷、肺急性损伤、肺顺应性下降等[10]。PS物质主要覆盖于肺泡内面,是维持肺通气功能的重要物质,具降低肺泡内压、减少肺泡渗出等作用[11]。王娴等[12]对MAS患儿重复使用PS, 结果患儿治疗后血氧分压升高, MAP、FiO2下降,较治疗前比较有显著差异(P < 0.05), 所有患儿存活,无死亡病例。黎敏等[13]对PS患儿采取机械通气联合PS治疗,联合组患儿机械通气时间、氧暴露时间、住院时间较机械通气组患儿缩短,存活率为95.24%, 高于机械通气治疗组的90.47%。樊晓艳等[14]对MAS患儿采取PS气管内注射,机械通气时间、氧暴露时间及住院时间缩短, OI指数下降。本研究中,观察组治疗后肺氧合功能、血气分析指标较对照组改善,治疗12、24 h MAP、FiO2低于对照组,上机时间短于对照组。结果发现,对MAS患儿采取呼吸机联合PS治疗,可提高肺顺应性,增强肺氧合功能,改善肺通气功能,且能缩短患儿上机时间,使患儿尽快接受治疗。
外源性PS给药能拮抗肺组织间隙内蛋白渗出,减轻肺炎症反应,并能减少胎粪中胆固醇、胆红素等有害物质,在最大程度上改善肺部功能,减轻肺部炎症程度[15-16]。对MAS患儿采取外源性PS给药,能够缓解因高氧暴露、正压通气造成的气道损伤、肺部损伤; 增强肺表面活性物质代谢能力,抑制蛋白渗入肺泡间隙,抑制该物质合成及分泌[17]; 降低核转录因子Kb表达,调控炎症反应[18]。本研究观察组呼吸机相关性肺炎、肺气漏发生率、病死率低于对照组。因此, PS联合呼吸机可降低肺损伤发生率,提高患儿存活率。综上所述, PS联合呼吸机治疗MAS能获得理想效果,可改善肺功能,降低并发症发生率,提升MAS存活率,临床价值高。
-
[1] VINÍCIUS D C L, MARCELO R A, RAQUEL D S C, et al. Predominance of Th1 immune response in pleural effusion of patients with tuberculosis among other exudative etiologies[J]. J Clin Microbiol, 2019, 58(1): e00927-19.
[2] FLÁVIA C, PATR? CIA C A, MADEIRA G R, et al. Interferon-gamma at the crossroads of tumor immune surveillance or evasion[J]. Front Immunol, 2018, 9: 847. doi: 10.3389/fimmu.2018.00847
[3] JORGOVANOVIC D, SONG M J, WANG L P, et al. Roles of IFN-γ in tumor progression and regression: a review[J]. Biomark Res, 2020, 8: 49. doi: 10.1186/s40364-020-00228-x
[4] ABREU R, ESSLER L, GIRI P, et al. Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication[J]. PLoS One, 2020, 15(12): e0240949. doi: 10.1371/journal.pone.0240949
[5] RUSSELL M S, DUDANI R, KRISHNAN L, et al. IFN-gamma expressed by T cells regulates the persistence of antigen presentation by limiting the survival of dendritic cells[J]. J Immunol, 2009, 183(12): 7710-7718. doi: 10.4049/jimmunol.0901274
[6] SCHULZ E G, MARIANI L, RADBRUCH A, et al. Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12[J]. Immunity, 2009, 30(5): 673-683. doi: 10.1016/j.immuni.2009.03.013
[7] USUI T, PREISS J C, KANNO Y, et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription[J]. J Exp Med, 2006, 203(3): 755-766. doi: 10.1084/jem.20052165
[8] FRAZÁO J B, COLOMBO M, SIMILLION C, et al. Gene expression in chronic granulomatous disease and interferon-γ receptor-deficient cells treated in vitro with interferon-Γ[J]. J Cell Biochem, 2019, 120(3): 4321-4332. doi: 10.1002/jcb.27718
[9] PAIDIPALLY P, TRIPATHI D, VAN A, et al. Interleukin-21 regulates natural killer cell responses during Mycobacterium tuberculosis infection[J]. J Infect Dis, 2018, 217(8): 1323-1333. doi: 10.1093/infdis/jiy034
[10] SALOU M, FRANCISZKIEWICZ K, LANTZ O. MAIT cells in infectious diseases[J]. Curr Opin Immunol, 2017, 48: 7-14. doi: 10.1016/j.coi.2017.07.009
[11] SARA S, MELISSA M, MUNYARADZI M, et al. MR1-independent activation of human mucosal-associated invariant T cells by Mycobacteria[J]. J Immunol Baltim Md 1950, 2019, 203(11): 2917-2927.
[12] SHEN L, JAMES F, HUANG D, et al. Immunization of Vγ2Vδ2 T cells programs sustained effector memory responses that control tuberculosis in nonhuman Primates[J]. Proc Natl Acad Sci U S A, 2019, 116(13): 6371-6378. doi: 10.1073/pnas.1811380116
[13] YANG R, YAO L, SHEN L, et al. IL-12 expands and differentiates human Vγ2Vδ2 T effector cells producing antimicrobial cytokines and inhibiting intracellular mycobacterial growth[J]. Front Immunol, 2019, 10: 913. doi: 10.3389/fimmu.2019.00913
[14] SHEN H B, GU J, XIAO H P, et al. Selective destruction of interleukin 23-induced expansion of a major antigen-specific γδ T-cell subset in patients with tuberculosis[J]. J Infect Dis, 2016, 215(3): 420-430.
[15] TAMBUNAN B A, PRIYANTO H, NUGRAHA J, et al. CD4+ and CD8+ t-cells expressing interferon gamma in active pulmonary tuberculosis patients[J]. Afr J Infect Dis, 2018, 12(1 Suppl): 49-53.
[16] GREEN A M, DIFAZIO R, FLYNN J L. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection[J]. J Immunol, 2013, 190(1): 270-277. doi: 10.4049/jimmunol.1200061
[17] COWLEY S C, ELKINS K L. CD4+ T cells mediate IFN-gamma-independent control of Mycobacterium tuberculosis infection both in vitro and in vivo[J]. J Immunol, 2003, 171(9): 4689-4699. doi: 10.4049/jimmunol.171.9.4689
[18] GALLEGOS A M, VAN HEIJST J W J, SAMSTEIN M, et al. A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo[J]. PLoS Pathog, 2011, 7(5): e1002052. doi: 10.1371/journal.ppat.1002052
[19] KERNER G, ROSAIN J, GUÉRIN A, et al. Inherited human IFN-γ deficiency underlies mycobacterial disease[J]. J Clin Investig, 2020, 130(6): 3158-3171. doi: 10.1172/JCI135460
[20] MARTÍNEZ-BARRICARTE R, MARKLE J G, MA C S, et al. Human IFN-γ immunity to Mycobacteria is governed by both IL-12 and IL-23[J]. Sci Immunol, 2018, 3(30): eaau6759. doi: 10.1126/sciimmunol.aau6759
[21] YANG R, MELE F, WORLEY L, et al. Human T-bet governs innate and innate-like adaptive IFN-γ immunity against Mycobacteria[J]. Cell, 2020, 183(7): 1826-1847. doi: 10.1016/j.cell.2020.10.046
[22] SHAW J A, DIACON A H, KOEGELENBERG C F N. Tuberculous pleural effusion[J]. Respirol Carlton Vic, 2019, 24(10): 962-971. doi: 10.1111/resp.13673
[23] SCHIERLOH P, LANDONI V, BALBOA L, et al. Human pleural B-cells regulate IFN-γ production by local T-cells and NK cells in a Mycobacterium tuberculosis-induced delayed hypersensitivity reaction[J]. Clin Sci (Lond), 2014, 127(6): 391-403. doi: 10.1042/CS20130769
[24] NEMETH J, H-M W, ZWICK R H, et al. Recruitment of Mycobacterium tuberculosis specific CD4+ T cells to the site of infection for diagnosis of active tuberculosis[J]. J Intern Med, 2009, 265(1): 163-168. doi: 10.1111/j.1365-2796.2008.02012.x
[25] JIANG J, CHEN X C, AN H J, et al. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling[J]. Sci Rep, 2016, 6(1): 32320. doi: 10.1038/srep32320
[26] LI Z T, YANG B Y, ZHANG Y N, et al. Mycobacterium tuberculosis-specific memory NKT cells in patients with tuberculous pleurisy[J]. J Clin Immunol, 2014, 34(8): 979-990. doi: 10.1007/s10875-014-0090-8
[27] POORAN A, DAVIDS M, NEL A, et al. IL-4 subverts mycobacterial containment in Mycobacterium tuberculosis-infected human macrophages[J]. Eur Respir J, 2019, 54(2): 1802242. doi: 10.1183/13993003.02242-2018
[28] AGGARWAL A N, AGARWAL R, DHOORIA S, et al. Unstimulated pleural fluid interferon gamma for diagnosis of tuberculous pleural effusion: a systematic review and meta-analysis[J]. J Clin Microbiol, 2021, 59(5): e02112-20.
[29] AGGARWAL A N, AGARWAL R, GUPTA D, et al. Interferon gamma release assays for diagnosis of pleural tuberculosis: a systematic review and meta-analysis[J]. J Clin Microbiol, 2015, 53(8): 2451-2459. doi: 10.1128/JCM.00823-15
[30] HOFLAND R W, BOSSINK A W J, LAMMERS J W J, et al. Pleural fluid and tuberculosis: are all interferon gamma release assays equal[J]. J Clin Microbiol, 2016, 54(2): 504-505. doi: 10.1128/JCM.02653-15
[31] LUO Y, XUE Y, GUO X Y, et al. Diagnostic value of pleural fluid T-SPOT for tuberculous pleurisy: an updated meta-analysis[J]. Tuberc Edinb Scotl, 2020, 122: 101941.
[32] TONG X, LI Z Z, ZHAO J J, et al. The value of single or combined use of pleural fluid interferon gamma release assay in the diagnosis of tuberculous pleurisy[J]. Trop Med Int Heal TM IH, 2021, 26(11): 1356-1366. doi: 10.1111/tmi.13659
[33] DAY C L, ABRAHAMS D A, LESEDI L, et al. Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load[J]. J Immunol Baltim Md 1950, 2011, 187(5): 2222-2232.
[34] CLIFFORD V, HE Y, ZUFFEREY C, et al. Interferon gamma release assays for monitoring the response to treatment for tuberculosis: a systematic review[J]. Tuberculosis, 2015, 95(6): 639-650. doi: 10.1016/j.tube.2015.07.002
[35] POURAKBARI B, MAMISHI S, BENVARI S, et al. Can interferon-γ release assays be useful for monitoring the response to anti-tuberculosis treatment: a systematic review and meta-analysis[J]. Arch Immunol Ther Exp, 2020, 68(1): 1-11. doi: 10.1007/s00005-019-00564-3
[36] ZHANG B Y, YU Z M, YANG Q L, et al. Serial anti-tuberculous immune responses during the follow-up of patients with tuberculous pleurisy[J]. Medicine, 2020, 99(2): e18367. doi: 10.1097/MD.0000000000018367
[37] KAMADA A, AMISHIMA M. QuantiFERON-TB®Gold Plus as a potential tuberculosis treatment monitoring tool[J]. Eur Respir J, 2017, 49(3): 1601976. doi: 10.1183/13993003.01976-2016
[38] PETRUCCIOLI E, CHIACCHIO T, VANINI V, et al. Effect of therapy on Quantiferon-Plus response in patients with active and latent tuberculosis infection[J]. Sci Rep, 2018, 8(1): 15626. doi: 10.1038/s41598-018-33825-w
计量
- 文章访问数: 200
- HTML全文浏览量: 133
- PDF下载量: 10