Research progress on resistance mechanism of tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae
-
摘要: 肺炎克雷伯菌(KP)是呼吸道感染常见致病菌, 近年来随着碳青霉烯类抗生素的广泛使用,耐碳青霉烯肺炎克雷伯菌(CRKP)的检出率上升,其多重耐药性给临床治疗带来巨大挑战。替加环素(TGC)属于一种极少数对多重耐药菌有良好效能的药物。本文就TGC耐药的CRKP菌株(T-CRKP)的耐药机制研究情况展开综述,为预防和控制该菌的传播流行提供依据。Abstract: Klebsiella pneumoniae (KP) is a common pathogen in clinical upper respiratory tract infection. In recent years, with the widespread use of carbapenem antibiotics, the detection rate of carbapenem-resistant Klebsiella pneumoniae (CRKP) has increased year by year. Its multiple drug resistance brings severe challenges to clinical treatment. Tigecycline(TGC) is one of the few drugs with good efficacy against multi-drug-resistant bacteria. This paper reviewed the research progress on the drug-resistant mechanism of TGC-resistant CRKP strain (T-CRKP), in order to provide a basis for preventing and controlling the spread and epidemic of tigecycline-resistant strains.
-
-
[1] SQUIRES K M, NGUYEN M H, SHIELDS R K, et al. Sequence type-258 carbapenem-resistant Klebsiella pneumoniae isolates in which ceftazidime-avibactam resistance emerged are not hypermutators[J]. Diagn Microbiol Infect Dis, 2020, 96(3): 114954. doi: 10.1016/j.diagmicrobio.2019.114954
[2] SHAMINA O V, KRYZHANOVSKAYA O A, LAZAREVA A V, et al. Emergence of a ST307 clone carrying a novel insertion element MITEKpn1 in the mgrB gene among carbapenem-resistant Klebsiella pneumoniae from Moscow, Russia[J]. Int J Antimicrob Agents, 2020, 55(2): 105850. doi: 10.1016/j.ijantimicag.2019.11.007
[3] 梁武华, 梁敏煜, 周海燕, 等. 耐碳青霉烯类肺炎克雷伯菌耐药监测及分子耐药机制的研究进展[J]. 当代医学, 2021, 27(19): 191-194. doi: 10.3969/j.issn.1009-4393.2021.19.079 [4] 陈艳慧, 胡龙华, 钟桥石, 等. 肺炎克雷伯菌临床分布特征及耐药性变迁[J]. 实验与检验医学, 2018, 36(3): 326-329. doi: 10.3969/j.issn.1674-1129.2018.03.010 [5] HU Y M, PING Y T, LI L Q, et al. A retrospective study of risk factors for carbapenem-resistant Klebsiella pneumoniae acquisition among ICU patients[J]. J Infect Dev Ctries, 2016, 10(3): 208-213. doi: 10.3855/jidc.6697
[6] RAHIM G R, GUPTA N, MAHESHWARI P, et al. Monomicrobial Klebsiella pneumoniae necrotizing fasciitis: an emerging life-threatening entity[J]. Clin Microbiol Infect, 2019, 25(3): 316-323. doi: 10.1016/j.cmi.2018.05.008
[7] 毛昳涵. 碳青霉烯耐药肺炎克雷伯菌院内流行及替加环素耐药机制研究[D]. 杭州: 浙江大学, 2019. [8] REYES J, AGUILAR A C, CAICEDO A. Carbapenem-resistant Klebsiella pneumoniae: microbiology key points for clinical practice[J]. Int J Gen Med, 2019, 12: 437-446. doi: 10.2147/IJGM.S214305
[9] AGYEMAN A A, BERGEN P J, RAO G G, et al. A systematic review and meta-analysis of treatment outcomes following antibiotic therapy among patients with carbapenem-resistant Klebsiella pneumoniae infections[J]. Int J Antimicrob Agents, 2020, 55(1): 105833. doi: 10.1016/j.ijantimicag.2019.10.014
[10] CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC). Vital signs: carbapenem-resistant Enterobacteriaceae[J]. MMWR Morb Mortal Wkly Rep, 2013, 62(9): 165-170.
[11] 胡付品, 郭燕, 朱德妹, 等. 2020年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2021, 21(4): 377-387. https://www.cnki.com.cn/Article/CJFDTOTAL-KGHL202104001.htm [12] 张娣. 一株泛耐药肺炎克雷伯菌耐药机制研究[D]. 杭州: 浙江大学, 2020. [13] DOAN T L, FUNG H B, MEHTA D, et al. Tigecycline: a glycylcycline antimicrobial agent[J]. Clin Ther, 2006, 28(8): 1079-1106. doi: 10.1016/j.clinthera.2006.08.011
[14] 郭咸希, 何文, 陈莹, 等. 我院住院患者耐碳青霉烯肺炎克雷伯菌感染的回顾性分析[J]. 中国药师, 2021, 24(2): 317-321. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYSG202102023.htm [15] FRITZENWANKER M, IMIRZALIOGLU C, HEROLD S, et al. Treatment options for carbapenem- resistant gram-negative infections[J]. Dtsch Arztebl Int, 2018, 115(20/21): 345-352.
[16] PAPADIMITRIOU-OLIVGERIS M, BARTZAVALI C, NIKOLOPOULOU A, et al. Impact of tigecycline's MIC in the outcome of critically ill patients with carbapenemase-producing Klebsiella pneumoniae bacteraemia treated with tigecycline monotherapy-validation of 2019's EUCAST proposed breakpoint changes[J]. Antibiotics (Basel), 2020, 9(11): E828. doi: 10.3390/antibiotics9110828
[17] HACKEL M, KAZMIERCZAK K M, HOBAN D J, et al. Assessment of the in vitro activity of ceftazidime-avibactam against multidrug-resistant Klebsiella spp. collected in the INFORM global surveillance study, 2012 to 2014[J]. Antimicrob Agents Chemother, 2016, 60(8): 4677-4683.
[18] KHURSHID M, RASHID A, HUSNAIN M, et al. In-vitro assessment of the therapeutic potential of polymyxins and tigecycline against multidrugresistant Acinetobacter isolates from infected wounds[J]. J Ayub Med Coll Abbottabad, 2020, 32(4): 459-464.
[19] GRIMSEY E M, WESTON N, RICCI V, et al. Overexpression of RamA, which regulates production of the multidrug resistance efflux pump AcrAB-TolC, increases mutation rate and influences drug resistance phenotype[J]. Antimicrob Agents Chemother, 2020, 64(4): e02460-e02419.
[20] SUBHADRA B, KIM J, KIM D H, et al. Local repressor AcrR regulates AcrAB efflux pump required for biofilm formation and virulence in Acinetobacter nosocomialis[J]. Front Cell Infect Microbiol, 2018, 8: 270. doi: 10.3389/fcimb.2018.00270
[21] 张娣, 周志慧. 碳青霉烯耐药肺炎克雷伯菌对替加环素的耐药机制研究进展[J]. 世界最新医学信息文摘: 连续型电子期刊, 2020, 20(24): 47-49, 54. doi: 10.3969/j.issn.1671-3141.2020.24.020 [22] LI J, ZHANG H Y, NING J N, et al. The nature and epidemiology of OqxAB, a multidrug efflux pump[J]. Antimicrob Resist Infect Control, 2019, 8: 44. doi: 10.1186/s13756-019-0489-3
[23] NIELSEN L E, SNESRUD E C, ONMUS-LEONE F, et al. IS5 element integration, a novel mechanism for rapid in vivo emergence of tigecycline nonsusceptibility in Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2014, 58(10): 6151-6156. doi: 10.1128/AAC.03053-14
[24] JUAN C H, HUANG Y W, LIN Y T, et al. Risk factors, outcomes, and mechanisms of tigecycline-nonsusceptible Klebsiella pneumoniae bacteremia[J]. Antimicrob Agents Chemother, 2016, 60(12): 7357-7363. doi: 10.1128/AAC.01503-16
[25] AKIYAMA T, PRESEDO J, KHAN A A. The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates[J]. Int J Antimicrob Agents, 2013, 42(2): 133-140. doi: 10.1016/j.ijantimicag.2013.04.017
[26] LINKEVICIUS M, SANDEGREN L, ANDERSSON D I. Potential of tetracycline resistance proteins to evolve tigecycline resistance[J]. Antimicrob Agents Chemother, 2016, 60(2): 789-796. doi: 10.1128/AAC.02465-15
[27] FOONG W E, WILHELM J, TAM H K, et al. Tigecycline efflux in Acinetobacter baumannii is mediated by TetA in synergy with RND-type efflux transporters[J]. J Antimicrob Chemother, 2020, 75(5): 1135-1139. doi: 10.1093/jac/dkaa015
[28] 赖宁燕, 虞亦鸣, 邓在春. 碳青霉烯类耐药肺炎克雷伯杆菌耐药机制及治疗策略研究进展[J]. 中国现代医生, 2019, 57(36): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYS201936042.htm [29] BENDER J K, KLARE I, FLEIGE C, et al. A nosocomial cluster of tigecycline- and vancomycin-resistant Enterococcus faecium isolates and the impact of rpsJ and tet(M) mutations on tigecycline resistance[J]. Microb Drug Resist, 2020, 26(6): 576-582. doi: 10.1089/mdr.2019.0346
[30] BEABOUT K, HAMMERSTROM T G, PEREZ A M, et al. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility[J]. Antimicrob Agents Chemother, 2015, 59(9): 5561-5566. doi: 10.1128/AAC.00547-15
[31] HE F, SHI Q C, FU Y, et al. Tigecycline resistance caused by rpsJ evolution in a 59-year-old male patient infected with KPC-producing Klebsiella pneumoniae during tigecycline treatment[J]. Infect Genet Evol, 2018, 66: 188-191. doi: 10.1016/j.meegid.2018.09.025
[32] 朱瑞奇, 吴韩, 曾杨梅, 等. 肠杆菌科细菌替加环素耐药机制的研究进展[J]. 江西畜牧兽医杂志, 2020(5): 7-12. doi: 10.3969/j.issn.1004-2342.2020.05.003 [33] LU B, JIANG Y J, MAN M Q, et al. Expression and regulation of 1-acyl-sn-glycerol- 3-phosphate acyltransferases in the epidermis[J]. J Lipid Res, 2005, 46(11): 2448-2457. doi: 10.1194/jlr.M500258-JLR200
[34] LI X, LIU L, JI J, et al. Tigecycline resistance in Acinetobacter baumannii mediated by frameshift mutation in plsC, encoding 1-acyl-sn-glycerol-3-phosphate acyltransferase[J]. Eur J Clin Microbiol Infect Dis, 2015, 34(3): 625-631. doi: 10.1007/s10096-014-2272-y
[35] HUANG Y H, CHOU S H, LIANG S W, et al. Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan[J]. J Antimicrob Chemother, 2018, 73(8): 2039-2046. doi: 10.1093/jac/dky164
-
期刊类型引用(5)
1. 万建平,周强. 经直肠超声造影检查联合血清前列腺特异性抗原检测对前列腺癌的诊断及预后预测价值. 癌症进展. 2025(02): 236-239 . 百度学术
2. 李正平,李永芬,王生鹏. 前列腺尿道悬吊术对小体积良性前列腺增生患者下尿路功能、血清炎症-应激因子、并发症的影响. 微创泌尿外科杂志. 2025(01): 31-37 . 百度学术
3. 王安勇,高余杰,黄学东,张衡,朱杰. 尿道前列腺切除术联合经尿道膀胱取石治疗老年前列腺增生伴膀胱结石的疗效及预后. 中国临床医生杂志. 2024(03): 290-294 . 百度学术
4. 潘宗森,王慧. 经尿道前列腺钬激光剜除术在大体积良性前列腺增生中的应用效果. 浙江创伤外科. 2024(03): 538-541 . 百度学术
5. 黄登辉,周广臣. 前列腺特异性抗原灰区患者前列腺穿刺活检结果的相关影响因素分析. 实用临床医药杂志. 2023(15): 77-81 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 402
- HTML全文浏览量: 202
- PDF下载量: 47
- 被引次数: 5