3型固有淋巴细胞在儿童气道免疫中的作用

黄永霞, 熊燚

黄永霞, 熊燚. 3型固有淋巴细胞在儿童气道免疫中的作用[J]. 实用临床医药杂志, 2022, 26(5): 144-148. DOI: 10.7619/jcmp.20214631
引用本文: 黄永霞, 熊燚. 3型固有淋巴细胞在儿童气道免疫中的作用[J]. 实用临床医药杂志, 2022, 26(5): 144-148. DOI: 10.7619/jcmp.20214631
HUANG Yongxia, XIONG Yi. Role of type 3 innate lymphoid cell in airway immunity in children[J]. Journal of Clinical Medicine in Practice, 2022, 26(5): 144-148. DOI: 10.7619/jcmp.20214631
Citation: HUANG Yongxia, XIONG Yi. Role of type 3 innate lymphoid cell in airway immunity in children[J]. Journal of Clinical Medicine in Practice, 2022, 26(5): 144-148. DOI: 10.7619/jcmp.20214631

3型固有淋巴细胞在儿童气道免疫中的作用

详细信息
    通讯作者:

    熊燚, E-mail: 842335529@qq.com

  • 中图分类号: R725;R563

Role of type 3 innate lymphoid cell in airway immunity in children

  • 摘要: 肺上皮细胞受到刺激后会分泌炎性介质,激活气道中驻留的免疫细胞以发挥保护作用,其中包括固有淋巴细胞,虽然固有淋巴细胞在肺组织中的数量较少,但能分泌大量细胞因子参与免疫应答。3型固有淋巴细胞(ILC3)是固有淋巴细胞的重要亚型,ILC3及其分泌的细胞因子如白细胞介素(IL)-17、IL-22在呼吸道感染中发挥着清除病原、促进黏膜修复及维持黏膜屏障稳态的免疫防御作用。本文总结了ILC3的发育历程、活化机制,对儿童气道炎性疾病的作用及最新研究进展。
    Abstract: Epithelial cells of the lungs secrete inflammatory mediators to activate resident immune cells in the airway for immune protection after stimulation, including innate lymphoid cells. Although the number of innate lymphoid cells is less, they can secrete numerous cytokines involving in immune response. Type 3 innate lymphoid cells (ILC3) are important subtype of innate lymphoid cells. ILC3 and its secreted cytokines interleukin (IL)-17 and IL-22 play immune defense roles in clearing pathogens, promoting mucosal repair and maintaining mucosal barrier homeostasis in respiratory infections. In this review, the development and activation mechanisms of ILC3 and its roles in pediatric airway inflammatory diseases, and latest research progress were summarized.
  • [1]

    DIEFENBACH A, COLONNA M, KOYASU S. Development, differentiation, and diversity of innate lymphoid cells[J]. Immunity, 2014, 41: 354-365. doi: 10.1016/j.immuni.2014.09.005

    [2]

    ARTIS D, SPITS H. The biology of innate lymphoid cells[J]. Nature, 2015, 517(7534): 293-301. doi: 10.1038/nature14189

    [3]

    HARLY C, KENNEY D, REN G, et al. The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage[J]. Nature Immunology, 2019, 20(9): 1150-1160. doi: 10.1038/s41590-019-0445-7

    [4]

    CONSTANTINIDES M G, MCDONALD B D, VERHOEF P A, et al. A committed precursor to innate lymphoid cells[J]. Nature, 2014, 508(7496): 397-401. doi: 10.1038/nature13047

    [5]

    HARLY C, CAM M, KAYE J, et al. Development and differentiation of early innate lymphoid progenitors[J]. Journal of Experimental Medicine, 2018, 215(1): 249-262. doi: 10.1084/jem.20170832

    [6]

    VIVIER E, ARTIS D, COLONNA M, et al. Innate lymphoid cells: 10 years on[J]. Cell, 2018, 174(5): 1054-1066. doi: 10.1016/j.cell.2018.07.017

    [7]

    WANG Q L, COLONNA M. Keeping time in group 3 innate lymphoid cells[J]. Nat Rev Immunol, 2020, 20(12): 720-726. doi: 10.1038/s41577-020-0397-z

    [8]

    MONTALDO E, TEIXEIRA-ALVES L G, GLATZER T, et al. Human RORγt(+)CD34(+) cells are lineage-specified progenitors of group 3 RORγt(+) innate lymphoid cells[J]. Immunity, 2014, 41(6): 988-1000. doi: 10.1016/j.immuni.2014.11.010

    [9]

    HE L, ZHOU M, LI Y C. Vitamin D/vitamin D receptor signaling is required for normal development and function of group 3 innate lymphoid cells in the gut[J]. iScience, 2019, 17: 119-131. doi: 10.1016/j.isci.2019.06.026

    [10]

    GRAY J, OEHRLE K, WORTHEN G, et al. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection[J]. Science Translational Medicine, 2017, 9(376): eaaf 9412. doi: 10.1126/scitranslmed.aaf9412

    [11]

    CRELLIN N K, TRIFARI S, KAPLAN C D, et al. Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2[J]. Immunity, 2010, 33(5): 752-764. doi: 10.1016/j.immuni.2010.10.012

    [12]

    GURCZYNSKI S J, MOORE B B. IL-17 in the lung: the good, the bad, and the ugly[J]. AJP Lung Cellular and Molecular Physiology, 2018, 314(1): L6-L16. doi: 10.1152/ajplung.00344.2017

    [13]

    APARICIO-DOMINGO P, ROMERA-HERNANDEZ M, KARRICH J J, et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage[J]. Journal of Experimental Medicine, 2015, 212(11): 1783-1791. doi: 10.1084/jem.20150318

    [14]

    GUO X H, QIU J, TU T, et al. Induction of innate lymphoid cell-derived interleukin-22 by the transcription factor STAT3 mediates protection against intestinal infection[J]. Immunity, 2014, 40(1): 25-39. doi: 10.1016/j.immuni.2013.10.021

    [15]

    RÖSLER BARBARA, HEROLD SUSANNE. Lung epithelial GM-CSF improves host defense function and epithelial repair in influenza virus pneumonia-a new therapeutic strategy?[J]. Molecular and Cellular Pediatrics, 2016, 3(1): 29. doi: 10.1186/s40348-016-0055-5

    [16]

    VAN MAELE L, CARNOY C, CAYET D, et al. Activation of type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during Streptococcus pneumoniae infection[J]. Journal of Infectious Diseases, 2014, 210(3): 493-503. doi: 10.1093/infdis/jiu106

    [17]

    MORTHA A, CHUDNOVSKIY A, HASHIMOTO D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis[J]. Science, 2014, 343(6178): 1249288. doi: 10.1126/science.1249288

    [18]

    KIM H Y, LEE H J, CHANG Y J, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity[J]. Nat Med, 2014, 20(1): 54-61. doi: 10.1038/nm.3423

    [19]

    GOLEBSKI K, ROS X R, NAGASAWA M, et al. IL-1β, IL-23, and TGF-β drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation[J]. Nat Commun, 2019, 10(1): 2162. doi: 10.1038/s41467-019-09883-7

    [20]

    BERNINK J H, OHNE Y, TEUNISSEN M B M, et al. C-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies[J]. Nat Immunol, 2019, 20(8): 992-1003. doi: 10.1038/s41590-019-0423-0

    [21]

    SCHIERING C, WINCENT E, METIDJI A, et al. Feedback control of AHR signalling regulates intestinal immunity[J]. Nature, 2017, 542(7640): 242-245. doi: 10.1038/nature21080

    [22]

    MICHAUDEL C, BATAILLE F, MAILLET I, et al. Ozone-induced aryl hydrocarbon receptor activation controls lung inflammation via interleukin-22 modulation[J]. Front Immunol, 2020, 11: 144. doi: 10.3389/fimmu.2020.00144

    [23]

    QI H B, LI Y Y, YUN H, et al. Lactobacillus maintains healthy gut mucosa by producing L-Ornithine[J]. Commun Biol, 2019, 2: 171. doi: 10.1038/s42003-019-0424-4

    [24]

    QIU J, HELLER J J, GUO X H, et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells[J]. Immunity, 2012, 36(1): 92-104. doi: 10.1016/j.immuni.2011.11.011

    [25]

    HUGHES T, BRIERCHECK E L, FREUD A G, et al. The transcription Factor AHR prevents the differentiation of a stage 3 innate lymphoid cell subset to natural killer cells[J]. Cell Rep, 2014, 8(1): 150-162. doi: 10.1016/j.celrep.2014.05.042

    [26]

    KISS E A, VONARBOURG C, KOPFMANN S, et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles[J]. Science, 2011, 334(6062): 1561-1565. doi: 10.1126/science.1214914

    [27]

    GRONKE K, HERNÅNDEZ P P, ZIMMERMANN J, et al. Interleukin-22 protects intestinal stem cells against genotoxic stress[J]. Nature, 2019, 566(7743): 249-253. doi: 10.1038/s41586-019-0899-7

    [28]

    TEUFEL C, HORVATH E, PETER A, et al. mTOR signaling mediates ILC3-driven immunopathology[J]. Mucosal Immunol, 2021, 14(6): 1323-1334. doi: 10.1038/s41385-021-00432-4

    [29]

    FEI T, ROSER T P, BIIN S, et al. ILC3s control airway inflammation by limiting T cell responses to allergens and microbes[J]. Cell Rep, 2021, 37(8): 110051. doi: 10.1016/j.celrep.2021.110051

    [30]

    NAOKI I, IVY S, ALANNA W, et al. Host immunology and rational immunotherapy for carbapenem-resistant Klebsiella pneumoniae infection[J]. JCI Insight, 2020, 5(8): e135591. doi: 10.1172/jci.insight.135591

    [31]

    GIACOMIN P R, MOY R H, NOTI M, et al. Epithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity[J]. Journal of Experimental Medicine, 2015, 212(10): 1513-1528. doi: 10.1084/jem.20141831

    [32]

    AZAD M B, KONYA T, PERSAUD R R, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study[J]. BJOG, 2016, 123(6): 983-993. doi: 10.1111/1471-0528.13601

    [33]

    RUSSELL S L, GOLD M J, HARTMANN M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma[J]. EMBO Rep, 2012, 13(5): 440-447. doi: 10.1038/embor.2012.32

    [34]

    XIONG H Z, KEITH J W, SAMILO D W, et al. Innate lymphocyte/Ly6C(hi) monocyte crosstalk promotes Klebsiella pneumoniae clearance[J]. Cell, 2016, 165(3): 679-689. doi: 10.1016/j.cell.2016.03.017

    [35]

    OHERLE K, ACKER E, BONFIELD M, et al. Insulin-like growth factor 1 supports a pulmonary niche that promotes type 3 innate lymphoid cell development in newborn lungs[J]. Immunity, 2020, 52(2): 275-294. e9. doi: 10.1016/j.immuni.2020.01.005

    [36] 蔡佳玉, 卢红艳, 苏兆亮, 等. 支气管肺发育不良小鼠肺组织3型固有淋巴细胞(ILC3)数量及相关细胞因子IL-17和IL-22分泌增加[J]. 细胞与分子免疫学杂志, 2020, 36(10): 865-870. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFM202010001.htm
    [37]

    ARDAIN A, DOMINGO-GONZALEZ R, DAS S, et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis[J]. Nature, 2019, 570(7762): 528-532. doi: 10.1038/s41586-019-1276-2

    [38]

    WARREN K J, POOLE J A, SWEETER J M, et al. Neutralization of IL-33 modifies the type 2 and type 3 inflammatory signature of viral induced asthma exacerbation[J]. Respir Res, 2021, 22(1): 206. doi: 10.1186/s12931-021-01799-5

    [39]

    KIM J, CHANG Y N, BAE B, et al. Innate immune crosstalk in asthmatic airways: innate lymphoid cells coordinate polarization of lung macrophages[J]. J Allergy Clin Immunol, 2019, 143(5): 1769-1782. e11. doi: 10.1016/j.jaci.2018.10.040

    [40]

    HAM J, KIM J, CHOI S, et al. Interactions between NCR+ILC3s and the microbiome in the airways shape asthma severity[J]. Immune Netw, 2021, 21(4): e25. doi: 10.4110/in.2021.21.e25

  • 期刊类型引用(2)

    1. 孔令玉,朱天怡. 微小RNA-1180在非小细胞肺癌中的表达及其临床意义. 实用临床医药杂志. 2022(03): 76-80 . 本站查看
    2. 朱洪宇,史志敏. 微小RNA-338-3p调控信号转导和转录激活因子1对表皮生长因子受体酪氨酸激酶抑制剂耐药肺癌细胞株PC-9/GR中程序性死亡配体1表达和细胞凋亡的影响. 实用临床医药杂志. 2022(04): 100-105 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  253
  • HTML全文浏览量:  80
  • PDF下载量:  18
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-11-23
  • 网络出版日期:  2022-03-28
  • 发布日期:  2022-03-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭