Research progress on mechanism of ferroptosis and its role in fibrotic diseases
-
摘要:
铁死亡是一种重要的细胞死亡方式,主要由铁依赖性氧化损伤引起,受铁代谢和脂质过氧化信号调控。细胞内铁代谢失衡、氧化还原状态受到破坏会促进细胞铁死亡的发生。近年来,越来越多研究发现在肝纤维化及肺纤维化疾病的病理过程中,存在铁积累和脂质过氧化物堆积现象,表明铁死亡参与了纤维化疾病的发生发展。本文对铁死亡在肝纤维化和肺纤维化疾病中发挥的不同调控作用进行总结,综述了在不同纤维化疾病中针对铁死亡相关机制抑制纤维化进展的有效药物,提出了纤维化疾病中针对铁死亡机制的潜在治疗靶点,为临床治疗纤维化疾病的新型靶向药物研发指明了方向。
Abstract:Ferroptosis is an important way of cell death, which is mainly caused by iron-dependent oxidative damage and regulated by iron metabolism and lipid peroxidation signals. Imbalance of iron metabolism and the destruction of redox state in cells will promote the occurrence of cell iron death. In recent years, more and more studies have found that iron accumulation and lipid peroxide accumulation exist in the pathological process of liver fibrosis and pulmonary fibrosis, indicating that iron death is involved in the occurrence and development of fibrosis. This study summarized the different regulatory roles of iron death in liver fibrosis and pulmonary fibrosis, reviewed the effective drugs that inhibit the progression of fibrosis according to the mechanisms related to iron death in different fibrosis diseases, and proposed the potential therapeutic targets for iron death mechanism in fibrosis diseases, which pointed out the direction for the research and development of new targeted drugs for the clinical treatment of fibrotic diseases.
-
Keywords:
- ferroptosis /
- liver fibrosis /
- pulmonary fibrosis /
- lipid peroxidation /
- nano reactors /
- artemisinin
-
-
[1] STOCKWELL B R, ANGELI J P F, BAYIR H, et al. Ferroptosis: aregulated cell death Nexuslinking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. doi: 10.1016/j.cell.2017.09.021
[2] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. doi: 10.1016/j.cell.2012.03.042
[3] JIANG X J, STOCKWELL B R, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. doi: 10.1038/s41580-020-00324-8
[4] BERTRAND R L. Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events[J]. Med Hypotheses, 2017, 101: 69-74. doi: 10.1016/j.mehy.2017.02.017
[5] DIXON S J, STOCKWELL B R. The role of iron and reactive oxygen species in cell death[J]. Nat Chem Biol, 2014, 10(1): 9-17. doi: 10.1038/nchembio.1416
[6] CHEN X, KANG R, KROEMER G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. doi: 10.1038/s41571-020-00462-0
[7] WEILAND A, WANG Y M, WU W H, et al. Ferroptosis and its role in diverse brain diseases[J]. Mol Neurobiol, 2019, 56(7): 4880-4893. doi: 10.1007/s12035-018-1403-3
[8] WANG W M, GREEN M, CHOI J E, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569(7755): 270-274. doi: 10.1038/s41586-019-1170-y
[9] LUEDDE T, KAPLOWITZ N, SCHWABE R F. Cell death and cell death responses in liver disease: mechanisms and clinical relevance[J]. Gastroenterology, 2014, 147(4): 765-783, e4. doi: 10.1053/j.gastro.2014.07.018
[10] MEHTA K J, FARNAUD S J, SHARP P A. Iron and liver fibrosis: Mechanistic and clinical aspects[J]. World J Gastroenterol, 2019, 25(5): 521-538. doi: 10.3748/wjg.v25.i5.521
[11] LI S, TAN H Y, WANG N, et al. The role of oxidative stress and antioxidants in liver diseases[J]. Int J Mol Sci, 2015, 16(11): 26087-26124. doi: 10.3390/ijms161125942
[12] TSUCHIDA T, FRIEDMAN S L. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. doi: 10.1038/nrgastro.2017.38
[13] YU Y Y, JIANG L, WANG H, et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis[J]. Blood, 2020, 136(6): 726-739. doi: 10.1182/blood.2019002907
[14] WANG L, ZHANG Z L, LI M M, et al. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation[J]. IUBMB Life, 2019, 71(1): 45-56. doi: 10.1002/iub.1895
[15] LI Y J, JIN C, SHEN M, et al. Iron regulatory protein 2 is required for artemether-mediated anti-hepatic fibrosis through ferroptosis pathway[J]. Free Radic Biol Med, 2020, 160: 845-859. doi: 10.1016/j.freeradbiomed.2020.09.008
[16] KONG Z Y, LIU R, CHENG Y R. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway[J]. Biomed Pharmacother, 2019, 109: 2043-2053. doi: 10.1016/j.biopha.2018.11.030
[17] SUI M, JIANG X F, CHEN J, et al. Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway[J]. Biomed Pharmacother, 2018, 106: 125-133. doi: 10.1016/j.biopha.2018.06.060
[18] ZHANG Z L, YAO Z, WANG L, et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J]. Autophagy, 2018, 14(12): 2083-2103. doi: 10.1080/15548627.2018.1503146
[19] ZHANG Z L, GUO M, LI Y J, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells[J]. Autophagy, 2020, 16(8): 1482-1505. doi: 10.1080/15548627.2019.1687985
[20] GONG Y, WANG N, LIU N G, et al. Lipid peroxidation and GPX4 inhibition are common causes for myofibroblast differentiation and ferroptosis[J]. DNA Cell Biol, 2019, 38(7): 725-733. doi: 10.1089/dna.2018.4541
[21] FENG H Z, STOCKWELL B R. Unsolved mysteries: how does lipid peroxidation cause ferroptosis[J]. PLoS Biol, 2018, 16(5): e2006203. doi: 10.1371/journal.pbio.2006203
[22] CHENG H P, FENG D D, LI X H, et al. Iron deposition-induced ferroptosis in alveolar type Ⅱ cells promotes the development of pulmonary fibrosis[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(12): 166204. doi: 10.1016/j.bbadis.2021.166204
[23] BRIDGES R J, NATALE N R, PATEL S A. System xc-cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS[J]. Br J Pharmacol, 2012, 165(1): 20-34. doi: 10.1111/j.1476-5381.2011.01480.x
[24] CAO J Y, DIXON S J. Mechanisms of ferroptosis[J]. Cell Mol Life Sci, 2016, 73(11/12): 2195-2209.
[25] IMAI H, MATSUOKA M, KUMAGAI T, et al. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis[J]. Curr Top Microbiol Immunol, 2017, 403: 143-170.
[26] RASHIDIPOUR N, KARAMI-MOHAJERI S, MANDEGARY A, et al. Where ferroptosis inhibitors and paraquat detoxification mechanisms intersect, exploring possible treatment strategies[J]. Toxicology, 2020, 433(434): 152407.
[27] LATUNDE-DADA G O. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy[J]. Biochim Biophys Acta Gen Subj, 2017, 1861(8): 1893-1900. doi: 10.1016/j.bbagen.2017.05.019
[28] AYALA A, MUÑOZ M F, ARGVELLES S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal[J]. Oxid Med Cell Longev, 2014, 2014: 360438.
[29] LIU T T, XU P L, KE S R, et al. Histone methyltransferase SETDB1 inhibits TGF-β-induced epithelial-mesenchymal transition in pulmonary fibrosis by regulating SNAI1 expression and the ferroptosis signaling pathway[J]. Arch Biochem Biophys, 2022, 715: 109087. doi: 10.1016/j.abb.2021.109087
[30] LI X, ZHUANG X B, QIAO T K. Role of ferroptosis in the process of acute radiation-induced lung injury in mice[J]. Biochem Biophys Res Commun, 2019, 519(2): 240-245. doi: 10.1016/j.bbrc.2019.08.165
[31] LI X, DUAN L J, YUAN S J, et al. Ferroptosis inhibitor alleviates radiation-induced lung fibrosis (RILF) via down-regulation of TGF-β1[J]. J Inflamm (Lond), 2019, 16: 11. doi: 10.1186/s12950-019-0216-0
[32] LIU T, YANG Q F, ZHENG H P, et al. Multifaceted roles of a bioengineered nanoreactor in repressing radiation-induced lung injury[J]. Biomaterials, 2021, 277: 121103. doi: 10.1016/j.biomaterials.2021.121103
[33] XIE Y, HOU W, SONG X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379. doi: 10.1038/cdd.2015.158
[34] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
-
期刊类型引用(9)
1. 周柯,徐建欣,邢国征. 尿常规检验中常用四项指标用于老年高血压诊断的效果分析. 婚育与健康. 2024(06): 49-51 . 百度学术
2. 吴卫林,杨波,钱江远,邹志勇,万美珍,陈丽萍. 依那普利叶酸片联合硝苯地平控释片对高血压患者血压及同型半胱氨酸水平的影响. 中国医学创新. 2023(09): 61-64 . 百度学术
3. 黄辉民,李以平,夏艳春. 右美托咪定复合阿芬太尼在老年高血压患者内镜逆行性胰胆管造影术中的临床效果及对氧化应激的影响. 中国当代医药. 2023(18): 122-125+130 . 百度学术
4. 朱明明,李宗虎,郑宪玲,王颖霞,张树杰. 2型糖尿病患者血糖波动与血清网膜素-1及氧化应激因子的关系. 实用临床医药杂志. 2023(20): 113-117 . 本站查看
5. 刘慧,梁婧,谷学兰,陶洪,武琳琳,龙海灯. 2型糖尿病合并高血压患者血清同型半胱氨酸水平与肾功能和颈动脉粥样硬化的相关性分析. 现代生物医学进展. 2022(04): 766-769+790 . 百度学术
6. 王小荣. 老年隐匿性高血压患者超敏C反应蛋白、尿蛋白、脑钠肽及脉搏波传导速度的关系. 中国医药指南. 2021(10): 64-65 . 百度学术
7. 宫庭. 马来酸依那普利片联合松龄血脉康胶囊治疗老年高血压的研究. 实用医技杂志. 2021(08): 976-978 . 百度学术
8. 林佩莉,杨华婷. 比索洛尔对原发性高血压合并收缩性心力衰竭患者心功能及氧化应激的影响. 海峡药学. 2021(09): 81-84 . 百度学术
9. 王成科,朱欢,董徽徽,胡庆华,胡江平,肖哲,刘晓丽. 运动对高血压患者微血管反应性的干预效应及可能机制研究进展. 中国预防医学杂志. 2021(09): 726-731 . 百度学术
其他类型引用(2)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量:
- 被引次数: 11