免疫检查点抑制剂相关性肺炎的研究进展

王杰, 蒋士卿, 王涛

王杰, 蒋士卿, 王涛. 免疫检查点抑制剂相关性肺炎的研究进展[J]. 实用临床医药杂志, 2022, 26(10): 135-138, 143. DOI: 10.7619/jcmp.20220546
引用本文: 王杰, 蒋士卿, 王涛. 免疫检查点抑制剂相关性肺炎的研究进展[J]. 实用临床医药杂志, 2022, 26(10): 135-138, 143. DOI: 10.7619/jcmp.20220546
WANG Jie, JIANG Shiqing, WANG Tao. Research progress of immune checkpoint inhibitors associated pneumonia[J]. Journal of Clinical Medicine in Practice, 2022, 26(10): 135-138, 143. DOI: 10.7619/jcmp.20220546
Citation: WANG Jie, JIANG Shiqing, WANG Tao. Research progress of immune checkpoint inhibitors associated pneumonia[J]. Journal of Clinical Medicine in Practice, 2022, 26(10): 135-138, 143. DOI: 10.7619/jcmp.20220546

免疫检查点抑制剂相关性肺炎的研究进展

基金项目: 

河南省中医药科学研究专项课题 2019ZYZD06

详细信息
    通讯作者:

    蒋士卿, E-mail: Jiang-shiqing66@126.com

  • 中图分类号: R730.6;R563.1

Research progress of immune checkpoint inhibitors associated pneumonia

  • 摘要:

    免疫检查点抑制剂(ICIs)被广泛应用于多种恶性肿瘤的治疗,但由ICIs诱导的免疫系统过度激活也会导致T细胞对自身抗原进行攻击,临床上出现一系列免疫相关不良事件(IRAEs)。免疫检查点抑制剂相关性肺炎(CIP)是一类少见但有潜在致命危险的免疫相关不良反应,发生在肿瘤免疫治疗任何时间。临床医生应了解CIP的机制及特征,及早识别并正确处理。本文就CIP的流行病学、生物学机制、临床特征、诊断及治疗等进行综述。关键词: 免疫检查点抑制剂; 免疫系统; 免疫检查点抑制剂相关性肺炎; 流行病学; 生物学机制

    Abstract:

    Immune checkpoint inhibitors (ICIS) are widely used in the treatment of a variety of malignant tumors, but the over activation of the immune system induced by ICIS will also lead to T cells attacking their own antigens, and cause a series of immune related adverse events (IRAEs) in clinic. Immune checkpoint inhibitor associated pneumonia (CIP) is a rare but potentially fatal immune related adverse reaction that occurs at any time of tumor immunotherapy. Clinicians should understand the mechanism and characteristics of CIP, and identify and deal with it correctly as soon as possible. This paper reviewed the epidemiology, biological mechanism, clinical characteristics, diagnosis and treatment of CIP.

  • 卵圆孔未闭(PFO)为心脏畸形的一种常见类型[1]。患者在咳嗽、憋气时,右房的血液可流入左房内,引起偏头痛等症状[2]。PFO患者易发生脑血管栓塞、卒中[3]。介入封堵术可直接将卵圆孔闭合,患者复发风险低于药物疗法,创伤小于开胸修补术,该术式已成为治疗PFO的首选手段[4]。既往封堵术中,医师常在X线引导下开展封堵操作,其成功率较高,但易对医患造成放射损伤[5]。近年来,临床逐渐将经胸超声心动图(TTE)用于介入封堵术中,其在确保微创的基础上,可使患者取得满意的近期疗效[6]。目前,有关TTE和X线在经皮PFO封堵术中应用的对比研究较少。本研究观察TTE监测引导在PFO封堵术中的应用效果,以期为临床行封堵术治疗PFO提供参考。

    对2020年6月—2022年10月本院收治的98例PFO介入封堵术患者的资料开展回顾性分析。纳入标准: ①符合2021年《卵圆孔未闭相关卒中预防中国专家指南》[1]中PFO的诊断标准者; ②具备PFO封堵术适应证[有以下情况中的1种: 房间隔中或大量右向左分流(RLS), 即RLS分级为2~3级; 合并原因未明确的脑栓塞; 合并原因未明确的颅外血栓栓塞; PFO引起的脑梗死或短暂性脑缺血发作,经抗凝治疗后复发]; ③年龄为18~65岁者; ④右心房压为8 mmHg(1 mmHg=0.133 322 kPa)以下者; ⑤资料完整者。排除标准: ①存在除PFO以外的其他心脏畸形者; ②存在已知原因的脑栓塞、入组3个月内存在严重出血等封堵术禁忌证者; ③肺高压所致RLS者; ④血压不稳定者; ⑤术后失访者。

    将98例患者根据封堵术中引导方式的不同分成X线组(n=50)和TTE组(n=48)。TTE组2例患者因术中声窗欠佳加用经食道超声心动图(TEE)引导被剔除,最终纳入46例。2组一般资料比较,差异无统计学意义(P>0.05)。见表 1

    表  1  2组一般资料比较(x±s)[n(%)]
    指标 分类 TTE组(n=46) X线组(n=50) χ2/t P
    性别 12(26.09) 16(32.00) 0.405 0.524
    34(73.91) 34(68.00)
    年龄/岁 45.76±6.18 46.38±7.10 0.455 0.650
    体质量指数/(kg/m2) 22.57±2.38 22.79±2.56 0.435 0.665
    PFO直径/cm 0.21±0.06 0.22±0.07 0.748 0.456
    RLS分级 2级 28(60.87) 28(56.00) 0.481 0.631
    3级 18(39.13) 22(44.00)
    合并卒中 6(13.04) 9(18.00) 0.446 0.504
    合并偏头痛 23(50.00) 27(54.00) 0.154 0.695
    有饮酒史 15(32.61) 19(38.00) 0.304 38.00
    有吸烟史 14(30.43) 18(36.00) 0.334 0.563
    封堵器使用型号 18 mm 3(6.52) 5(10.00) 0.710 0.701
    25 mm 32(69.57) 31(62.00)
    30 mm 11(23.91) 14(28.00)
    PFO: 卵圆孔未闭; RLS: 右向左分流。
    下载: 导出CSV 
    | 显示表格

    98例患者均于局麻下开展介入封堵术,手术均由同一医疗团队实施。

    X线组术中采用X线引导,操作方法: 患者平躺于手术床上,实施消毒、局麻等操作后,穿刺右股静脉,放入6F静脉鞘并全身肝素化; 通过右心导管并经卵圆孔将导丝送入左上肺静脉位置,替换导丝后插入输送鞘; 在X线透视下,将封堵器(北京华医圣杰科技有限公司生产,批号20190325)顺着输送鞘送入房间隔双侧; 通过X线确认封堵位置较好时,充分释放其伞面,撤出输送系统,通过超声发现无残余分流,瓣膜开闭无影响判定为封堵成功,术毕。

    TTE组开展单纯TTE引导的经皮PFO封堵术,即患者处于平躺位,实施消毒、局麻等操作后,穿刺右股静脉,置入6F静脉鞘并全身肝素化; 在TTE引导下经卵圆孔将单弯导管送入左心房,通过超声确认导管处于左心房后,替换“J”型导丝,插入输送鞘; 在TTE引导下将封堵器(与X线组同一批号)顺着输送鞘送入房间隔双侧; TTE评估封堵位置较好时,充分释放其伞面,撤出输送系统,通过超声发现无残余分流,瓣膜开闭无影响判定为封堵成功,术毕。2组术后第1天使用4 100单位低分子肝素(每隔12 h用药1次),第2天开始服用阿司匹林3~4 mg/kg, 连续治疗3个月。

    ① 手术情况: 观察2组有无心包积液、封堵器脱落、致命心律失常等并发症发生。同时记录手术时间(实施局麻至完全撤出鞘管时间)及术后住院时间。② RLS分级: 术后3个月,通过右心声学造影观察左心微泡情况,据此评定RLS分级。0级,左心腔内无微泡; 1级,左心腔内有1~10个微泡,少量RLS; 2级,左心腔内有11~30个微泡,中量RLS; 3级,左心腔内有>30个微泡,或填满微泡,大量RLS[7]。③偏头痛情况: 于术前1 d和术后1、3个月采用头痛影响测验-6 (HIT-6)[8]对合并偏头痛的患者予以评定。HIT-6评定项目包括躯体疼痛、社会角色、认知功能、活力、情绪状态、运动能力等,最低分36分,最高分78分。得分越高提示头痛越严重。

    采用SPSS 25.0软件分析数据,计量资料均符合正态分布,以(x±s)描述,组间比较采用独立样本t检验,多组比较采用方差分析; 计数资料以[n(%)]描述,采用χ2检验。等级资料采用非参数检验。P < 0.05为差异有统计学意义。

    TTE组2例患者出现少许心包积液,无需特殊处理,术后观察显示已自行吸收。X线组术中1例出现室上速,经电复律后好转。2组术后透视显示封堵位置固定,形态满意,且2组并发症发生率比较,差异无统计学意义(校正χ2=0.005, P=0.941)。术后3个月, 2组均未见封堵器脱落、致命心律失常、心脏穿孔等严重并发症发生。

    TTE组的手术时间长于X线组,差异有统计学意义(P < 0.05); 2组术后住院时间比较,差异无统计学意义(P>0.05), 见表 2

    表  2  2组手术时间及术后住院时间比较(x±s)
    组别 n 手术时间/min 术后住院时间/d
    TTE组 46 25.33±5.71* 2.52±0.64
    X线组 50 21.16±4.30 2.36±0.58
    与X线组比较, * P < 0.05。
    下载: 导出CSV 
    | 显示表格

    2组术前RLS分级比较,差异无统计学意义(P>0.05); 术后, 2组RLS分级均低于术前,差异有统计学意义(TTE组: Z=8.075, P < 0.001; X线组: Z=8.576, P < 0.001); 术后2组RLS分级比较,差异无统计学意义(P>0.05), 见表 3

    表  3  2组RLS分级情况比较[n(%)]
    时点 分级 TTE组(n=46) X线组(n=50) Z P
    术前 0级 0 0 0.481 0.631
    1级 0 0
    2级 28(60.87) 28(56.00)
    3级 18(39.13) 22(44.00)
    术后 0级 12(26.09) 14(28.00) 0.380 0.704
    1级 29(63.04) 32(64.00)
    2级 5(10.87) 4(8.00)
    3级 0 0
    下载: 导出CSV 
    | 显示表格

    术后1、3个月, 2组偏头痛患者HIT-6评分低于术前,差异有统计学意义(P < 0.05), 2组偏头痛患者HIT-6评分比较,差异无统计学意义(P>0.05), 见表 4

    表  4  2组偏头痛患者HIT-6评分比较(x±s
    组别 n 术前 术后1个月 术后3个月 F P
    TTE组 23 72.04±5.22 54.43±4.27 41.57±3.13 292.068 < 0.001
    X线组 27 71.81±4.75 53.78±4.04 40.63±3.51 330.193 < 0.001
    t 0.163 0.552 0.991
    P 0.871 0.583 0.326
    下载: 导出CSV 
    | 显示表格

    卵圆孔为房间隔中部的一个生理通道,对于胎儿而言,为维持良好血供,卵圆孔始终处于开放状态; 出生后,因肺循环的建立及左房压的增高,可使卵圆孔表面被原发房间隔的薄片所覆盖,继而发生闭合,若3岁以上卵圆孔未闭合,则称为PFO[9]。既往研究[10]认为, PFO作为先天性心脏病,不会造成心内血流变化,无需进行特殊处置。但近年来研究[11]发现, PFO与偏头痛、脑梗死等神经系统疾病的发生相关,其中偏头痛在PFO患者中较为普遍,伴发率为40.9%~72.0%。PFO引起偏头痛的机制可能为疾病长期存在,可致5-羟色胺等物质经短暂的RLS进入颅内,激活相应受体而触发[12]。目前,PFO治疗方法包括药物疗法(如抗凝、抗血小板药物)、开胸修补术及介入封堵术。药物疗法仅能短暂缓解患者症状,在某些诱因作用下,患者症状易复发。开胸修补术对机体创伤大,患者术后恢复进程慢。介入封堵术可通过闭合卵圆孔而治愈疾病,且其在局麻下开展,无需全麻插管,创伤小,患者接受度高[13]。故介入封堵术成为PFO治疗的优选。

    既往PFO封堵术过程中需应用X线引导,其能于透视下清晰了解心房与房间隔的解剖关系,呈现封堵器的全貌,确保封堵操作顺利完成。但患者暴露于X线下,易发生辐射损伤,术者也面临职业暴露风险[14]。此外,该术式需大型设备,对场地有严格要求。TEE引导术中需全麻插管,增加了患者术中应激及不适感[15]。近年来,单纯TTE引导的经皮PFO封堵术逐渐受到临床青睐。此术式具有如下优势: ①与X线引导的介入术相比,其可使患者规避X线辐射,术者无需担心职业暴露的发生,且术中无需大型医疗设备,无场地限制,可降低医疗费用。②与TEE引导的介入术相比,其可预防全麻插管并发症的发生,使患者获得良好的手术体验。③术中利用TTE可提供更加直观的指导,能较准确地定位封堵位置,同时能及时发现封堵器脱落等异常情况,并妥善处理[16]。本研究比较分析了单纯TTE、X线引导的经皮PFO封堵术的应用效果,结果显示, 98例PFO均成功实现封堵,其中TTE组有2例因术中声窗欠佳,而加用TEE进行引导。分析原因为:对于胸壁较薄者,TTE可清晰显示房间隔结构及边缘情况,而胸壁较厚时,因超声波的穿透性有限,可能导致裂隙的边缘无法清晰显现。TEE是将探头经食管置入左心房后壁的附近,房间隔处于超声近场,获得的图像质量较TTE更佳。故在通过TTE无法获得清晰图像时,可将TEE透视作为补充,以保证封堵效果。本研究结果显示, TTE组术中发生2例心包积液,这可能与定位或释放封堵器时发生穿孔有关。X线组发生1例室上速,这可能与传导束走行于裂隙边缘及其在封堵器的压迫下发生炎性水肿有关。但2组并发症程度均较轻,且均于对症处理后好转,可见2种透视方式均能保证患者封堵的安全性。术后2组RLS分级均较术前有显著改善,且改善程度相当。上述结果表明, TTE在封堵术监测中发挥着积极作用。本研究结果表明, 2组HIT-6评分均较术前显著降低,且降低程度相当。这是由于实施封堵术后,患者RLS分级均得到有效改善,一些物质通过肺循环被有效代谢,进入颅脑内的量减少,继而可有效缓解偏头痛[17]。本研究中, TTE引导封堵术的手术时间长于X线引导封堵术,可能与前者在本院应用时间短,术者对操作熟练度不高,以及学习曲线长有关[18]。但本研究存在不足,本研究纳入病例来自单一中心,研究人群的代表性有所不足,此外缺少远期效果评定,故未来需联合其他中心实施远期随访研究进一步探讨。

    综上所述, X线、单纯TTE引导的经皮PFO封堵术均可有效闭合卵圆孔,均能对PFO患者RLS、偏头痛起到良好的改善作用,但后者无辐射,能避免对患者造成损伤,并预防术者发生职业暴露。

  • [1]

    ALSAAB H O, SAU S, ALZHRANI R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome[J]. Front Pharmacol, 2017, 8: 561. doi: 10.3389/fphar.2017.00561

    [2] 崔建东, 张羽, 王红治. 免疫检查点抑制剂在非小细胞肺癌治疗中的临床应用[J]. 肿瘤药学, 2019, 9(1): 14-19. doi: 10.3969/j.issn.2095-1264.2019.01.04
    [3]

    FRIEDMAN C F, PROVERBS-SINGH T A, POSTOW M A. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review[J]. JAMA Oncol, 2016, 2(10): 1346-1353. doi: 10.1001/jamaoncol.2016.1051

    [4]

    POZZESSERE C, BOUCHAAB H, JUMEAU R, et al. Relationship between pneumonitis induced by immune checkpoint inhibitors and the underlying parenchymal status: a retrospective study[J]. ERJ Open Res, 2020, 6(1): 00165-02019.

    [5]

    SURESH K, NAIDOO J, LIN C T, et al. Immune checkpoint immunotherapy for non-small cell lung cancer: benefits and pulmonary toxicities[J]. Chest, 2018, 154(6): 1416-1423. doi: 10.1016/j.chest.2018.08.1048

    [6]

    BOUTROS C, TARHINI A, ROUTIER E, et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination[J]. Nat Rev Clin Oncol, 2016, 13(8): 473-486. doi: 10.1038/nrclinonc.2016.58

    [7]

    BAXI S, YANG A N, GENNARELLI R L, et al. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis[J]. BMJ, 2018, 360: k793.

    [8]

    WANG D Y, SALEM J E, COHEN J V, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis[J]. JAMA Oncol, 2018, 4(12): 1721-1728. doi: 10.1001/jamaoncol.2018.3923

    [9]

    NISHINO M, RAMAIYA N H, AWAD M M, et al. PD-1 inhibitor-related pneumonitis in advanced cancer patients: radiographic patterns and clinical course[J]. Clin Cancer Res, 2016, 22(24): 6051-6060. doi: 10.1158/1078-0432.CCR-16-1320

    [10]

    NISHINO M, HATABU H. Programmed death-1/programmed death ligand-1 inhibitor-related pneumonitis and radiographic patterns[J]. J Clin Oncol, 2017, 35(14): 1628-1629.

    [11]

    NISHINO M, GIOBBIE-HURDER A, HATABU H, et al. Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced cancer: a systematic review and meta-analysis[J]. JAMA Oncol, 2016, 2(12): 1607-1616. doi: 10.1001/jamaoncol.2016.2453

    [12]

    HODI F S, O'DAY S J, MCDERMOTT D F, et al. Improved survival with ipilimumab in patients with metastatic melanoma[J]. N Engl J Med, 2010, 363(8): 711-723. doi: 10.1056/NEJMoa1003466

    [13]

    WOLCHOK J D, NEYNS B, LINETTE G, et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study[J]. Lancet Oncol, 2010, 11(2): 155-164. doi: 10.1016/S1470-2045(09)70334-1

    [14]

    KUMAR V, CHAUDHARY N, GARG M, et al. Current diagnosis and management of immune related adverse events (irAEs) induced by immune checkpoint inhibitor therapy[J]. Front Pharmacol, 2017, 8: 49. doi: 10.3389/fphar.2017.00049

    [15]

    ATCHLEY W T, ALVAREZ C, SAXENA-BEEM S, et al. Immune checkpoint inhibitor-related pneumonitis in lung cancer[J]. Chest, 2021, 160(2): 731-742. doi: 10.1016/j.chest.2021.02.032

    [16]

    SURESH K, VOONG K R, SHANKAR B, et al. Pneumonitis in non-small cell lung cancer patients receiving immune checkpoint immunotherapy: incidence and risk factors[J]. J Thorac Oncol, 2018, 13(12): 1930-1939. doi: 10.1016/j.jtho.2018.08.2035

    [17]

    TONE M, IZUMO T, AWANO N, et al. High mortality and poor treatment efficacy of immune checkpoint inhibitors in patients with severe grade checkpoint inhibitor pneumonitis in non-small cell lung cancer[J]. Thorac Cancer, 2019, 10(10): 2006-2012. doi: 10.1111/1759-7714.13187

    [18]

    CHO J Y, KIM J, LEE J S, et al. Characteristics, incidence, and risk factors of immune checkpoint inhibitor-related pneumonitis in patients with non-small cell lung cancer[J]. Lung Cancer, 2018, 125: 150-156. doi: 10.1016/j.lungcan.2018.09.015

    [19]

    NISHINO M, HATABU H, HODI F S, et al. Drug-related pneumonitis in the era of precision cancer therapy[J]. JCO Precis Oncol, 2017, 1: PO. 17. 00026.

    [20]

    SHOHDY K S, ABDEL-RAHMAN O. Risk of pneumonitis with different immune checkpoint inhibitors in NSCLC[J]. Ann Transl Med, 2017, 5(17): 365. doi: 10.21037/atm.2017.06.67

    [21]

    FUJⅡ T, COLEN R R, BILEN M A, et al. Incidence of immune-related adverse events and its association with treatment outcomes: the MD Anderson Cancer Center experience[J]. Investig New Drugs, 2018, 36(4): 638-646. doi: 10.1007/s10637-017-0534-0

    [22]

    POSTOW M A, SIDLOW R, HELLMANN M D. Immune-related adverse events associated with immune checkpoint blockade[J]. N Engl J Med, 2018, 378(2): 158-168. doi: 10.1056/NEJMra1703481

    [23]

    TABCHI S, MESSIER C, BLAIS N. Immune-mediated respiratory adverse events of checkpoint inhibitors[J]. Curr Opin Oncol, 2016, 28(4): 269-277. doi: 10.1097/CCO.0000000000000291

    [24]

    LATCHMAN Y, WOOD C R, CHERNOVA T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation[J]. Nat Immunol, 2001, 2(3): 261-268. doi: 10.1038/85330

    [25]

    CHUZI S, TAVORA F, CRUZ M, et al. Clinical features, diagnostic challenges, and management strategies in checkpoint inhibitor-related pneumonitis[J]. Cancer Manag Res, 2017, 9: 207-213. doi: 10.2147/CMAR.S136818

    [26]

    HASSEL J C, HEINZERLING L, ABERLE J, et al. Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): evaluation and management of adverse drug reactions[J]. Cancer Treat Rev, 2017, 57: 36-49. doi: 10.1016/j.ctrv.2017.05.003

    [27]

    NAIDOO J, WANG X, WOO K M, et al. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy[J]. J Clin Oncol, 2017, 35(7): 709-717. doi: 10.1200/JCO.2016.68.2005

    [28] 王汉萍, 郭潇潇, 周佳鑫, 等. 免疫检查点抑制剂相关肺炎的临床诊治建议[J]. 中国肺癌杂志, 2019, 22(10): 621-626. doi: 10.3779/j.issn.1009-3419.2019.10.03
    [29]

    WIDMANN G, NGUYEN V A, PLAICKNER J, et al. Imaging features of toxicities by immune checkpoint inhibitors in cancer therapy[J]. Curr Radiol Rep, 2016, 5(11): 59.

    [30]

    DELAUNAY M, CADRANEL J, LUSQUE A, et al. Immune-checkpoint inhibitors associated with interstitial lung disease in cancer patients[J]. Eur Respir J, 2017, 50(2): 1700050. doi: 10.1183/13993003.00050-2017

    [31]

    SUZUKI K, YANAGIHARA T, MATSUMOTO K, et al. Immune-checkpoint profiles for T cells in bronchoalveolar lavage fluid of patients with immune-checkpoint inhibitor-related interstitial lung disease[J]. Int Immunol, 2020, 32(8): 547-557. doi: 10.1093/intimm/dxaa022

    [32]

    NAKASHIMA K, NAITO T, OMORI S, et al. Organizing pneumonia induced by nivolumab in a patient with metastatic melanoma[J]. J Thorac Oncol, 2016, 11(3): 432-433. doi: 10.1016/j.jtho.2015.10.004

    [33]

    ISHIWATA T, EBATA T, IWASAWA S, et al. Nivolumab-induced acute fibrinous and organizing pneumonia (AFOP)[J]. Intern Med, 2017, 56(17): 2311-2315. doi: 10.2169/internalmedicine.8271-16

    [34]

    BARJAKTAREVIC I Z, QADIR N, SURI A N, et al. Organizing pneumonia as a side effect of ipilimumab treatment of melanoma[J]. Chest, 2013, 143(3): 858-861. doi: 10.1378/chest.12-1467

    [35]

    MATSUKANE R, WATANABE H, MINAMI H, et al. Continuous monitoring of neutrophils to lymphocytes ratio for estimating the onset, severity, and subsequent prognosis of immune related adverse events[J]. Sci Rep, 2021, 11(1): 1324. doi: 10.1038/s41598-020-79397-6

    [36] 王锋, 秦叔逵, 华海清, 等. 免疫检查点抑制剂相关性肺炎的临床特点及分型研究[J]. 临床肿瘤学杂志, 2021, 26(6): 541-549. doi: 10.3969/j.issn.1009-0460.2021.06.011
    [37]

    ZHAI X Y, ZHANG J, TIAN Y R, et al. The mechanism and risk factors for immune checkpoint inhibitor pneumonitis in non-small cell lung cancer patients[J]. Cancer Biol Med, 2020, 17(3): 599-611. doi: 10.20892/j.issn.2095-3941.2020.0102

    [38]

    KALISZ K R, RAMAIYA N H, LAUKAMP K R, et al. Immune checkpoint inhibitor therapy-related pneumonitis: patterns and management[J]. Radiographics, 2019, 39(7): 1923-1937. doi: 10.1148/rg.2019190036

    [39] 张勇. 肿瘤免疫检查点抑制剂相关肺炎的管理[J]. 中国临床医学, 2020, 27(6): 922-925. https://www.cnki.com.cn/Article/CJFDTOTAL-LCYX202006006.htm
    [40]

    THOMPSON J A. New NCCN guidelines: recognition and management of immunotherapy-related toxicity[J]. J Natl Compr Canc Netw, 2018, 16(5S): 594-596. doi: 10.6004/jnccn.2018.0047

计量
  • 文章访问数:  527
  • HTML全文浏览量:  526
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 网络出版日期:  2022-05-04

目录

/

返回文章
返回
x 关闭 永久关闭