组织工程领域中过氧化物的研究进展

古先扬, 马敏先

古先扬, 马敏先. 组织工程领域中过氧化物的研究进展[J]. 实用临床医药杂志, 2022, 26(16): 135-139. DOI: 10.7619/jcmp.20220894
引用本文: 古先扬, 马敏先. 组织工程领域中过氧化物的研究进展[J]. 实用临床医药杂志, 2022, 26(16): 135-139. DOI: 10.7619/jcmp.20220894
GU Xianyang, MA Minxian. Research progress of peroxide in field of tissue engineering[J]. Journal of Clinical Medicine in Practice, 2022, 26(16): 135-139. DOI: 10.7619/jcmp.20220894
Citation: GU Xianyang, MA Minxian. Research progress of peroxide in field of tissue engineering[J]. Journal of Clinical Medicine in Practice, 2022, 26(16): 135-139. DOI: 10.7619/jcmp.20220894

组织工程领域中过氧化物的研究进展

基金项目: 

贵州省贵阳市科技计划项目基金资助项目 筑科合同[2018]1-81号

详细信息
    通讯作者:

    马敏先, E-mail: 562047687@qq.com

  • 中图分类号: Q819;R34

Research progress of peroxide in field of tissue engineering

  • 摘要:

    在植入物与宿主整合的过程中, 如何维持细胞活力和代谢活性对于工程组织的存活和功能至关重要。过氧化物可被用作氧释放材料来减少细胞凋亡,提高工程组织存活率和成功率。过氧化物通过氧气释放对细菌产生抑制作用,释放主要机制是水解,常用的过氧化物包括过氧化钠、过氧化钙、过氧化钠和过氧化氢等。本文综述了不同类型过氧化物在骨、胰腺、心血管、皮肤、抗菌等组织方面的研究进展。

    Abstract:

    During the integration of implants and hosts, how to maintain cell viability and metabolic activity is very important for the survival and function of engineered tissue. Peroxides can be used as oxygen releasing materials to reduce apoptosis and increase the survival and success rate of engineered tissues. Peroxides can inhibit bacteria through the release of oxygen, the main mechanism of release is hydrolysis, and commonly used peroxides include sodium peroxide, calcium peroxide, sodium peroxide and hydrogen peroxide. This paper reviewed the research progress of different types of peroxides in bone, pancreas, cardiovascular, skin, antibacterial and other tissues.

  • [1]

    KAUSHIK G, LEIJTEN J, KHADEMHOSSEINI A. Concise review: organ engineering: design, technology, and integration[J]. Stem Cells, 2017, 35(1): 51-60. doi: 10.1002/stem.2502

    [2]

    LEIJTEN J, ROUWKEMA J, ZHANG Y S, et al. Advancing tissue engineering: atale of nano-, micro-, and macroscale integration[J]. Small, 2016, 12(16): 2130-2145. doi: 10.1002/smll.201501798

    [3]

    MAS-BARGUES C, SANZ-ROS J, ROMÁN-DOMÍNGUEZ A, et al. Relevance of oxygen concentration in stem cell culture for regenerative medicine[J]. Int J Mol Sci, 2019, 20(5): E1195. doi: 10.3390/ijms20051195

    [4]

    LEE P, CHANDEL N S, SIMON M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond[J]. Nat Rev Mol Cell Biol, 2020, 21(5): 268-283. doi: 10.1038/s41580-020-0227-y

    [5]

    REYES J G, FARIAS J G, JorgeG, et al. The hypoxic testicle: physiology and pathophysiology[J]. Oxid Med Cell Longev, 2012: 929285.

    [6] 史雨林, 刘彦普, 张海霞. 组织工程骨血管化的研究进展[J]. 国际口腔医学杂志, 2011, 38(2): 242-245. doi: 10.3969/j.issn.1673-5749.2011.02.031
    [7]

    ERDEM A, DARABI M A, NASIRI R, et al. 3D bioprinting of oxygenated cell-laden gelatin methacryloyl constructs[J]. AdvHealthcMater, 2020, 9(15): e1901794.

    [8]

    JI S T, KIM H, YUN J, et al. Promising therapeutic strategies for mesenchymal stem cell-based cardiovascular regeneration: from cell priming to tissue engineering[J]. Stem Cells Int, 2017: 3945403.

    [9]

    NOVOSEL E C, KLEINHANS C, KLUGER P J. Vascularization is the key challenge in tissue engineering[J]. Adv Drug Deliv Rev, 2011, 63(4/5): 300-311.

    [10]

    HUANG D, LI K D, ZHENG X H, et al. Hyperbaric oxygen therapy: an effective auxiliary treatment method for large jaw cysts[J]. Int J Med Sci, 2021, 18(16): 3692-3696. doi: 10.7150/ijms.57360

    [11]

    FARRIS A L, LAMBRECHTS D, ZHOU Y X, et al. 3D-printed oxygen-releasing scaffolds improve bone regeneration in mice[J]. Biomaterials, 2022, 280: 121318. doi: 10.1016/j.biomaterials.2021.121318

    [12]

    YANG Z Y, CHEN H H, YANG P Z, et al. Nano-oxygenated hydrogels for locally and permeably hypoxia relieving to heal chronic wounds[J]. Biomaterials, 2022, 282: 121401. doi: 10.1016/j.biomaterials.2022.121401

    [13]

    ZEHRA M, ZUBAIRI W, HASAN A, et al. Oxygen generating polymeric nano fibers that stimulate angiogenesis and show efficient wound healing in a diabetic wound model[J]. Int J Nanomedicine, 2020, 15: 3511-3522. doi: 10.2147/IJN.S248911

    [14]

    SUVARNAPATHAKI S, NGUYEN M A, GOULOPOULOS A A, et al. Engineering calcium peroxide based oxygen generating scaffolds for tissue survival[J]. Biomater Sci, 2021, 9(7): 2519-2532. doi: 10.1039/D0BM02048F

    [15]

    ASHAMMAKHI N, DARABI M A, KEHR N S, et al. Advances in controlled oxygen generating biomaterials for tissue engineering and regenerative therapy[J]. Biomacromolecules, 2020, 21(1): 56-72. doi: 10.1021/acs.biomac.9b00546

    [16]

    TOURI M, MOZTARZADEH F, OSMAN N A A, et al. 3D-printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival[J]. Mater Sci Eng C Mater Biol Appl, 2018, 84: 236-242. doi: 10.1016/j.msec.2017.11.037

    [17]

    HSIEH T E, LIN S J, CHEN L C, et al. Optimizing an injectable composite oxygen-generating system for relieving tissue hypoxia[J]. Front Bioeng Biotechnol, 2020, 8: 511. doi: 10.3389/fbioe.2020.00511

    [18]

    MONTESDEOCA C Y C, AFEWERKI S, STOCCO T D, et al. Oxygen-generating smart hydrogels supporting chondrocytes survival in oxygen-free environments[J]. Colloids Surf B Biointerfaces, 2020, 194: 111192. doi: 10.1016/j.colsurfb.2020.111192

    [19]

    MOHSENI-VADEGHANI E, KARIMI-SOFLOU R, KHORSHIDI S, et al. Fabrication of oxygen and calcium releasing microcarriers with different internal structures for bone tissue engineering: solid filled versus hollow microparticles[J]. Colloids Surf B Biointerfaces, 2021, 197: 111376. doi: 10.1016/j.colsurfb.2020.111376

    [20]

    PENG Z Y, WANG C Q, LIU C, et al. 3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect[J]. J Mater Chem B, 2021, 9(28): 5698-5710. doi: 10.1039/D1TB00178G

    [21]

    LOU Y M, KONG M Y, LI L Y, et al. Inhibition of the Keap1/Nrf2 signaling pathway significantly promotes the progression of type 1 diabetes mellitus[J]. Oxid Med Cell Longev, 2021, 2021: 7866720.

    [22]

    MCQUILLING J P, SITTADJODY S, PENDERGRAFT S, et al. Applications of particulate oxygen-generating substances (POGS) in the bioartificial pancreas[J]. Biomater Sci, 2017, 5(12): 2437-2447. doi: 10.1039/C7BM00790F

    [23]

    RAZAVI M, PRIMAVERA R, KEVADIYA B D, et al. A collagen based cryogel bioscaffold that generates oxygen for islet transplantation[J]. Adv Funct Mater, 2020, 30(15): 1902463. doi: 10.1002/adfm.201902463

    [24]

    CORONEL M M, GEUSZ R, STABLER C L. Mitigating hypoxic stress on pancreatic islets via in situ oxygen generating biomaterial[J]. Biomaterials, 2017, 129: 139-151. doi: 10.1016/j.biomaterials.2017.03.018

    [25]

    FARZIN A, HASSAN S, TEIXEIRA L S M, et al. Self-oxygenation of tissues orchestrates full-thickness vascularization of living implants[J]. Adv Funct Mater, 2021, 31(42): 2100850. doi: 10.1002/adfm.202100850

    [26]

    STOECK C T, VON DEUSTER C, FUETTERER M, et al. Cardiovascular magnetic resonance imaging of functional and microstructural changes of the heart in a longitudinal pig model of acute to chronic myocardial infarction[J]. J Cardiovasc Magn Reson, 2021, 23(1): 103. doi: 10.1186/s12968-021-00794-5

    [27]

    FU H N, FU J K, MA S C, et al. An ultrasound activated oxygen generation nanosystem specifically alleviates myocardial hypoxemia and promotes cell survival following acute myocardial infarction[J]. J Mater Chem B, 2020, 8(28): 6059-6068. doi: 10.1039/D0TB00859A

    [28]

    FAN Z B, XU Z B, NIU H, et al. An injectable oxygen release system to augment cell survival and promote cardiac repair following myocardial infarction[J]. Sci Rep, 2018, 8(1): 1371. doi: 10.1038/s41598-018-19906-w

    [29]

    BOIZOT J, MINVILLE-WALZ M, REINHARDT D P, et al. FBN2silencing recapitulates hypoxic conditions and induces elastic fiber impairment in human dermal fibroblasts[J]. Int J Mol Sci, 2022, 23(3): 1824. doi: 10.3390/ijms23031824

    [30]

    HARRISON B S, EBERLI D, LEE S J, et al. Oxygen producing biomaterials for tissue regeneration[J]. Biomaterials, 2007, 28(31): 4628-4634. doi: 10.1016/j.biomaterials.2007.07.003

    [31]

    LYU X G, LI Z, CHEN S Y, et al. Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering[J]. Biomaterials, 2016, 84: 99-110. doi: 10.1016/j.biomaterials.2016.01.032

    [32]

    WARD C L, CORONA B T, YOO J J, et al. Oxygen generating biomaterials preserve skeletal muscle homeostasis under hypoxic and ischemic conditions[J]. PLoS One, 2013, 8(8): e72485. doi: 10.1371/journal.pone.0072485

    [33]

    GOLOB DEEB J, SMITH J, BELVIN B R, et al. Er: YAG laser irradiation reduces microbial viability when used in combination with irrigation with sodium hypochlorite, chlorhexidine, and hydrogen peroxide[J]. Microorganisms, 2019, 7(12): E612. doi: 10.3390/microorganisms7120612

    [34]

    SHEN S, MAMAT M, ZHANG S C, et al. Synthesis of CaO2nanocrystals and their spherical aggregates with uniform sizes for use as a biodegradable bacteriostatic agent[J]. Small, 2019, 15(36): e1902118. doi: 10.1002/smll.201902118

    [35]

    SOFOKLEOUS P, ALI S, WILSON P, et al. Sustained antimicrobial activity and reduced toxicity of oxidative biocides through biodegradable microparticles[J]. Acta Biomater, 2017, 64: 301-312. doi: 10.1016/j.actbio.2017.10.001

    [36]

    WANG J P, ZHU Y Z, BAWA H K, et al. Oxygen-generating nanofiber cell scaffolds with antimicrobial properties[J]. ACS Appl Mater Interfaces, 2011, 3(1): 67-73. doi: 10.1021/am100862h

    [37]

    ABUDULA T, GAUTHAMAN K, HAMMAD A H, et al. Oxygen-releasing antibacterial nanofibrous scaffolds for tissue engineering applications[J]. Polymers (Basel), 2020, 12(6): E1233. doi: 10.3390/polym12061233

    [38]

    NEDAIE H A, GHOLAMI S, LONGO F, et al. The effect of magnetic field on Linac based Stereotactic Radiosurgery dosimetric parameters[J]. Biomed Phys Eng Express, 2020, 7(1): 23.

    [39]

    WU P H, ZHONG Q H, MA T H, et al. To what extent should the intestinal be resected proximally after radiotherapy: hint from a pathological view[J]. Gastroenterol Rep (Oxf), 2020, 8(4): 277-285. doi: 10.1093/gastro/goz047

    [40]

    SHAO Y R, WANG L Y, FU J K, et al. Efficient free radical generation against cancer cells by low-dose X-ray irradiation with a functional SPC delivery nanosystem[J]. J Mater Chem B, 2016, 4(35): 5863-5872. doi: 10.1039/C6TB00734A

    [41]

    MA B J, WANG S, LIU F, et al. Self-assembled copper-amino acid nanoparticles for in situglutathione "AND" H2O2 sequentially triggered chemodynamic therapy[J]. J Am Chem Soc, 2019, 141(2): 849-857. doi: 10.1021/jacs.8b08714

    [42]

    SHI H, HE X X, WANG K M, et al. Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration[J]. Proc Natl Acad Sci USA, 2011, 108(10): 3900-3905. doi: 10.1073/pnas.1016197108

    [43]

    WANG H Y, SU Z C, HE X W, et al. H2O2 self-supplying degradable epitope imprinted polymers for targeted fluorescence imaging and chemodynamic therapy[J]. Nanoscale, 2021, 13(29): 12553-12564. doi: 10.1039/D1NR02524D

    [44]

    XU Y H, ZHANG F Y, ZHAI W J, et al. Unraveling of advances in 3D-printed polymer-based bone scaffolds[J]. Polymers, 2022, 14(3): 566. doi: 10.3390/polym14030566

    [45]

    BAO X G, ZHU L J, HUANG X D, et al. 3D biomimetic artificial bone scaffolds with dual-cytokines spatiotemporal delivery for large weight-bearing bone defect repair[J]. Sci Rep, 2017, 7(1): 7814. doi: 10.1038/s41598-017-08412-0

    [46]

    OTT H C, CLIPPINGER B, CONRAD C, et al. Regeneration and orthotopic transplantation of a bioartificial lung[J]. Nat Med, 2010, 16(8): 927-933. doi: 10.1038/nm.2193

  • 期刊类型引用(13)

    1. 刘春晓,何磊,张玲玲,李国良. 阿立哌唑联合脑循环系统治疗仪治疗精神分裂症的临床效果. 临床医药实践. 2025(01): 62-65 . 百度学术
    2. 张荣洪,邱吉明,刘菲,刘慧珍. 在不同肌松药联合丙泊酚麻醉下无抽搐电休克治疗对精神分裂症患者的影响. 中国医学创新. 2024(01): 53-56 . 百度学术
    3. 戴艺荣,叶小惠. 阿立哌唑联合无抽搐电休克治疗难治性精神分裂症的临床效果观察. 中国现代药物应用. 2024(07): 29-33 . 百度学术
    4. 沈洁. 研究无抽搐电休克治疗精神病患者的临床安全性. 系统医学. 2024(04): 97-99+106 . 百度学术
    5. 徐昕,赵楠,庞檬佼. 电休克治疗对精神分裂症患者认知功能及执行功能的影响. 心理月刊. 2024(06): 79-81 . 百度学术
    6. 马娟,丁宁,丁木兵. 精神分裂症患者的治疗依从性影响因素分析及对生活质量和生活能力的影响. 海军医学杂志. 2024(05): 521-525 . 百度学术
    7. 翁武彪,林剑凌,周长青. 无抽搐电休克治疗联合磁共振仪监测对精神分裂症患者短时瞬间记忆功能及对脑电功能的影响. 中国医疗器械信息. 2023(03): 128-130 . 百度学术
    8. 李世兴. 无抽搐电休克联合阿立哌唑对精神分裂症患者疗效及血清BDNF、S100B水平的影响. 中国现代药物应用. 2023(07): 124-127 . 百度学术
    9. 方钱禹,吴艳,程良红. 无抽搐电休克联合喹硫平对双相情感障碍躁狂发作患者氧化应激水平及认知功能的影响. 中国医学创新. 2023(12): 47-51 . 百度学术
    10. 李亚娇. 不同频次无抽搐电休克辅助治疗精神分裂症住院患者的效果. 中外医学研究. 2023(12): 116-120 . 百度学术
    11. 杨越琪,郑小涵,朱岩,周志勇,李晓欧. 八通道经颅刺激脑电调控系统的设计. 计算机测量与控制. 2022(01): 161-167 . 百度学术
    12. 吕杏放,罗肇明,夏伟梅,梁锐太,梁杰,罗端庆. 6种抗精神病药物治疗女性精神分裂症患者的效果及不良反应分析. 中外医学研究. 2022(16): 10-14 . 百度学术
    13. 秦荣,雷秀雯. 计算机认知矫正联合药物治疗对精神分裂症康复期患者心理推理能力和视空间工作记忆能力的影响. 内科. 2021(06): 750-753+784 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  206
  • HTML全文浏览量:  112
  • PDF下载量:  12
  • 被引次数: 13
出版历程
  • 收稿日期:  2022-03-21
  • 网络出版日期:  2022-09-02

目录

    /

    返回文章
    返回
    x 关闭 永久关闭