噻苯达唑联合抗真菌药物对新生隐球菌的体外抑菌效应

唐炼, 孙毅, 李娟

唐炼, 孙毅, 李娟. 噻苯达唑联合抗真菌药物对新生隐球菌的体外抑菌效应[J]. 实用临床医药杂志, 2022, 26(16): 108-112. DOI: 10.7619/jcmp.20220973
引用本文: 唐炼, 孙毅, 李娟. 噻苯达唑联合抗真菌药物对新生隐球菌的体外抑菌效应[J]. 实用临床医药杂志, 2022, 26(16): 108-112. DOI: 10.7619/jcmp.20220973
TANG Lian, SUN Yi, LI Juan. In vitro antifungal effects of thiabendazole in combination with antifungal agents on Cryptococcus neoformans[J]. Journal of Clinical Medicine in Practice, 2022, 26(16): 108-112. DOI: 10.7619/jcmp.20220973
Citation: TANG Lian, SUN Yi, LI Juan. In vitro antifungal effects of thiabendazole in combination with antifungal agents on Cryptococcus neoformans[J]. Journal of Clinical Medicine in Practice, 2022, 26(16): 108-112. DOI: 10.7619/jcmp.20220973

噻苯达唑联合抗真菌药物对新生隐球菌的体外抑菌效应

基金项目: 

湖北省卫生健康委员会科研项目 WJ2021M261

湖北省自然科学基金项目 2019CFB567

详细信息
    通讯作者:

    李娟, E-mail: 37016653@qq.com

  • 中图分类号: R978.6;R978.5

In vitro antifungal effects of thiabendazole in combination with antifungal agents on Cryptococcus neoformans

  • 摘要:
    目的 

    观察噻苯达唑分别联合抗真菌药物氟康唑、两性霉素B、泊沙康唑、伊曲康唑、伏立康唑对新生隐球菌的体外抑菌效果。

    方法 

    参照美国临床实验室标准化研究所的M27-A3方案, 测定噻苯达唑和抗真菌药物氟康唑、两性霉素B、泊沙康唑、伊曲康唑、伏立康唑单独应用对20株新生隐球菌菌株的最低抑菌浓度(MIC)。采用棋盘法测定噻苯达唑分别联合氟康唑、两性霉素B、泊沙康唑、伊曲康唑、伏立康唑对20株新生隐球菌菌株的体外抑菌效果。

    结果 

    噻苯达唑单独应用对新生隐球菌菌株的MIC为8.0~32.0 μg/mL; 两性霉素B、氟康唑、伊曲康唑、泊沙康唑、伏立康唑单独应用对新生隐球菌菌株的MIC分别为0.250 0~8.000 0、1.000 0~8.000 0、0.062 5~2.000 0、0.062 5~4.000 0、0.062 5~1.000 0 μg/mL。噻苯达唑与两性霉素B联合应用对7株新生隐球菌有协同作用,与氟康唑联合应用对8株新生隐球菌有协同作用,与伊曲康唑联合应用对4株新生隐球菌有协同作用,与泊沙康唑联合应用对5株新生隐球菌有协同作用,与伏立康唑联合应用对1株新生隐球菌有协同作用。

    结论 

    噻苯达唑具有一定的抗新生隐球菌作用,在体外与常用抗真菌药物氟康唑、两性霉素B、泊沙康唑、伊曲康唑、伏立康唑联用时可起到协同作用,降低抗真菌药物对部分新生隐球菌菌株的MIC。

    Abstract:
    Objective 

    To observe antifungal effects of thiabendazole combined with fluconazole, amphotericin B, posaconazole, itraconazole and voriconazole, respectively on Cryptococcus neoformans in vitro.

    Methods 

    The minimum inhibitory concentrations (MIC) of the chemical agents against 20 strains of Cryptococcus neoformans by thiabendazole and antifungal agents including fluconazole, amphotericin B, posaconazole, itraconazole and voriconazole alone were determined according to the M27-A3 protocol proposed by the American Clinical Laboratory Standardization Committee. Microdilution checkerboard technique system was used to determine in vitro antifungal effects of thiabendazole in combination with fluconazole, amphotericin B, posaconazole, itraconazole or voriconazole, respectively for 20 strains of Cryptococcus neoformans.

    Results 

    MIC of thiabendazole against Cryptococcus neoformans ranged from 8 to 32 μg/mL. MICs of amphotericin B, fluconazole, itraconazole, posaconazole and voriconazole against Cryptococcus neoformants were 0.250 0 to 8.000 0, 1.000 0 to 8.000 0, 0.062 5 to 2.000 0, 0.062 5 to 4.000 0 and 0.062 5 to 1.000 0 μg/mL, respectively. Synergistic inhibitory effect was found in 7 strains via thiabendazole and amphotericin B, 8 strains via thiabendazole and fluconazole, 4 strains via thiabendazole and itraconazole, 5 strains via thiabendazole and posaconazole, and 1 strain via thiabendazole and voriconazole, respectively.

    Conclusion 

    Thiabendazole has potential anti-Cryptococcus neoformans effect and have synergy effects in combination with antifungal agents such as fluconazole, amphotericin B, posaconazole, itraconazole, voriconazole against Cryptococcus neoformans, which can decrease MIC of antifungal drugs against some strains of Cryptococcus neoformans.

  • 表  1   TBZ和5种抗真菌药物单独应用对20株新生隐球菌的体外抑菌效果

    菌株编号 MIC/(μg/mL)
    TBZ AMB FLU ITR POS VOR
    5338 16.0 0.250 0 2.000 0 0.062 5 0.250 0 0.062 5
    5781 16.0 0.500 0 4.000 0 0.062 5 0.062 5 0.062 5
    7109 8.0 0.500 0 8.000 0 2.000 0 1.000 0 0.125 0
    7394 8.0 1.000 0 1.000 0 0.062 5 0.062 5 0.062 5
    7764 8.0 0.500 0 2.000 0 0.500 0 0.250 0 0.062 5
    7789 32.0 8.000 0 1.000 0 0.062 5 0.062 5 0.062 5
    7906 16.0 0.500 0 8.000 0 1.000 0 1.000 0 0.062 5
    8026 8.0 0.250 0 4.000 0 0.062 5 0.062 5 0.062 5
    8061 16.0 0.250 0 1.000 0 0.500 0 0.250 0 0.062 5
    G4 32.0 0.500 0 8.000 0 1.000 0 2.000 0 1.000 0
    G5 32.0 4.000 0 2.000 0 2.000 0 2.000 0 0.500 0
    G6 8.0 4.000 0 2.000 0 0.062 5 0.062 5 0.062 5
    G8 16.0 1.000 0 8.000 0 0.062 5 0.062 5 0.062 5
    G9 8.0 0.500 0 2.000 0 1.000 0 1.000 0 0.125 0
    G10 32.0 8.000 0 8.000 0 1.000 0 4.000 0 1.000 0
    G11 16.0 8.000 0 4.000 0 0.250 0 0.500 0 0.125 0
    G12 8.0 1.000 0 4.000 0 0.062 5 0.062 5 0.062 5
    Z1 8.0 1.000 0 1.000 0 0.250 0 0.250 0 0.062 5
    Z2 8.0 0.500 0 2.000 0 0.500 0 0.500 0 0.062 5
    Z3 8.0 4.000 0 4.000 0 1.000 0 0.250 0 0.062 5
    MIC: 最低抑菌浓度; TBZ: 噻苯达唑; AMB: 两性霉素B; FLU: 氟康唑; ITR: 伊曲康唑; POS: 泊沙康唑; VOR: 伏立康唑。
    下载: 导出CSV

    表  2   TBZ分别联合5种抗真菌药物对新生隐球菌的体外抑菌效果

    菌株编号 TBZ联合AMB TBZ联合FLU TBZ联合ITR TBZ联合POS TBZ联合VOR
    TBZ MIC/(μg/mL) AMB MIC/(μg/mL) FICI TBZ MIC/(μg/mL) FLU MIC/(μg/mL) FICI TBZ MIC/(μg/mL) ITR MIC/(μg/mL) FICI TBZ MIC/(μg/mL) POS MIC/(μg/mL) FICI TBZ MIC/(μg/mL) VOR MIC/(μg/mL) FICI
    5338 8.0 0.062 5 0.75 1.0 0.500 0 0.31 0.5 0.062 5 1.03 1.0 0.062 5 0.31 0.5 0.062 5 1.03
    5781 16.0 0.062 5 1.13 1.0 0.250 0 0.13 0.5 0.062 5 1.03 2.0 0.062 5 1.13 0.5 0.062 5 1.03
    7109 8.0 0.062 5 1.13 8.0 0.062 5 1.01 8.0 0.062 5 1.03 1.0 0.250 0 0.38 0.5 0.125 0 1.06
    7394 8.0 0.062 5 1.06 0.5 0.250 0 0.31 0.5 0.062 5 1.06 0.5 0.062 5 1.06 0.5 0.062 5 1.06
    7764 8.0 0.125 0 1.25 1.0 0.250 0 0.25 1.0 0.125 0 0.38 1.0 0.125 0 0.63 0.5 0.062 5 1.06
    7789 4.0 0.062 5 0.13 0.5 0.250 0 0.27 0.5 0.062 5 1.02 0.5 0.062 5 1.02 0.5 0.062 5 1.02
    7906 2.0 0.062 5 0.25 16.0 0.062 5 1.01 8.0 0.250 0 0.75 8.0 0.062 5 0.56 4.0 0.062 5 1.25
    8026 2.0 0.125 0 0.75 8.0 0.062 5 1.02 0.5 0.062 5 1.06 0.5 0.062 5 1.06 0.5 0.062 5 1.06
    8061 0.5 0.062 5 0.28 4.0 0.500 0 0.75 1.0 0.125 0 0.31 0.5 0.125 0 0.53 0.5 0.062 5 1.03
    G4 8.0 0.062 5 0.38 0.5 8.000 0 1.02 8.0 0.500 0 0.75 2.0 0.500 0 0.31 0.5 1.000 0 1.02
    G5 2.0 1.000 0 0.31 4.0 2.000 0 1.13 8.0 1.000 0 0.75 0.5 1.000 0 0.52 4.0 0.250 0 0.63
    G6 0.5 0.062 5 0.08 8.0 0.125 0 1.06 0.5 0.062 5 1.06 0.5 0.062 5 1.06 0.5 0.062 5 1.06
    G8 8.0 0.062 5 0.56 2.0 0.125 0 0.14 0.5 0.062 5 1.03 0.5 0.062 5 1.03 0.5 0.062 5 1.03
    G9 8.0 0.062 5 1.13 8.0 0.062 5 1.03 8.0 0.062 5 1.06 2.0 0.062 5 0.31 0.5 0.062 5 0.56
    G10 2.0 0.125 0 0.08 2.0 4.000 0 0.56 4.0 0.250 0 0.38 1.0 0.500 0 0.16 0.5 0.125 0 0.14
    G11 8.0 0.062 5 0.51 4.0 0.125 0 0.28 8.0 0.125 0 1.00 2.0 0.062 5 0.25 0.5 0.062 5 0.53
    G12 8.0 0.062 5 1.06 4.0 0.125 0 0.53 0.5 0.062 5 1.06 0.5 0.062 5 1.06 0.5 0.062 5 1.06
    Z1 8.0 0.062 5 1.06 1.0 0.125 0 0.25 2.0 0.062 5 0.50 2.0 0.062 5 0.50 0.5 0.062 5 1.06
    Z2 8.0 0.500 0 2.00 4.0 1.000 0 1.00 8.0 0.500 0 2.00 4.0 0.125 0 0.75 0.5 0.062 5 1.06
    Z3 8.0 0.062 5 1.02 8.0 1.000 0 1.25 1.0 0.250 0 0.38 4.0 0.125 0 1.00 0.5 0.062 5 1.06
    TBZ: 噻苯达唑; AMB: 两性霉素B; FLU: 氟康唑; ITR: 伊曲康唑; POS: 泊沙康唑; VOR: 伏立康唑; MIC: 最低抑菌浓度; FICI: 分数抑菌浓度指数。
    下载: 导出CSV
  • [1] 王兴东, 张传名, 陈永昶, 等. 非免疫缺陷肺隐球菌病8例临床分析[J]. 实用临床医药杂志, 2016, 20(15): 166-167. doi: 10.7619/jcmp.201615061
    [2]

    MAY R C, STONE N R H, WIESNER D L, et al. Cryptococcus: from environmental saprophyte to global pathogen[J]. Nat Rev Microbiol, 2016, 14(2): 106-117. doi: 10.1038/nrmicro.2015.6

    [3]

    MUSELIUS B, DURAND S L, GEDDES-MCALISTER J. Proteomics of Cryptococcus neoformans: from the lab to the clinic[J]. Int J Mol Sci, 2021, 22(22): 12390. doi: 10.3390/ijms222212390

    [4]

    CHEN Y C, CHANG T Y, LIU J W, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: a 12-year longitudinal study[J]. BMC Infect Dis, 2015, 15: 277. doi: 10.1186/s12879-015-1023-8

    [5]

    SMITH K D, ACHAN B, HULLSIEK K H, et al. Increased antifungal drug resistance in clinical isolates of Cryptococcus neoformans in Uganda[J]. Antimicrob Agents Chemother, 2015, 59(12): 7197-7204. doi: 10.1128/AAC.01299-15

    [6]

    DBOUK N H, COVINGTON M B, NGUYEN K, et al. Increase of reactive oxygen species contributes to growth inhibition by fluconazole in Cryptococcus neoformans[J]. BMC Microbiol, 2019, 19(1): 243. doi: 10.1186/s12866-019-1606-4

    [7]

    LACEY E. Mode of action of benzimidazoles[J]. Parasitol Today, 1990, 6(4): 112-115. doi: 10.1016/0169-4758(90)90227-U

    [8]

    BARRÓN-BRAVO O G, HERNÁNDEZ-MARÍN J A, GUTIÉRREZ-CHÁVEZ A J, et al. Susceptibility of entomopathogenic nematodes to ivermectin and thiabendazole[J]. Chemosphere, 2020, 253: 126658. doi: 10.1016/j.chemosphere.2020.126658

    [9] 何承彦, 孙毅, 高露娟, 等. 伊曲康唑、特比萘芬和他克莫司单用及联合对皮炎外瓶霉的体外抗真菌作用[J]. 中华皮肤科杂志, 2017, 50(4): 283-285. doi: 10.3760/cma.j.issn.0412-4030.2017.04.011
    [10]

    ŁOPIEÑSKA-BIERNAT E, STRYIÑSKI R, PAUKSZTO Ł, et al. Correlation of NHR-48 transcriptional modulator expression with selected CYP genes'expression during thiabendazole treatment of Anisakis simplex (s. l. ) -an in vitro study[J]. Pathogens, 2020, 9(12): 1030. doi: 10.3390/pathogens9121030

    [11]

    WANG L L, LEE K T, JUNG K W, et al. The novel microtubule-associated CAP-glycine protein Cgp1 governs growth, differentiation, and virulence of Cryptococcus neoformans[J]. Virulence, 2018, 9(1): 566-584. doi: 10.1080/21505594.2017.1423189

    [12]

    REID G A, MILES C S, MOYSEY R K, et al. Catalysis in fumarate reductase[J]. Biochim Biophys Acta, 2000, 1459(2/3): 310-315.

    [13]

    HARDS K, ADOLPH C, HAROLD L K, et al. Two for the price of one: attacking the energetic-metabolic hub of Mycobacteria to produce new chemotherapeutic agents[J]. Prog Biophys Mol Biol, 2020, 152: 35-44. doi: 10.1016/j.pbiomolbio.2019.11.003

    [14]

    SAKAI C K, TOMITSUKA E, ESUMI H, et al. Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells[J]. Biochim Biophys Acta, 2012, 1820(5): 643-651. doi: 10.1016/j.bbagen.2011.12.013

    [15]

    JUNGE W, SIELAFF H, ENGELBRECHT S. Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase[J]. Nature, 2009, 459(7245): 364-370. doi: 10.1038/nature08145

    [16]

    JARDIM-MESSEDER D, CABREIRA-CAGLIARI C, RAUBER R, et al. Fumarate reductase superfamily: a diverse group of enzymes whose evolution is correlated to the establishment of different metabolic pathways[J]. Mitochondrion, 2017, 34: 56-66. doi: 10.1016/j.mito.2017.01.002

    [17]

    TOMITSUKA E, KITA K, ESUMI H. An anticancer agent, pyrvinium pamoate inhibits the NADH-fumarate reductase system: a unique mitochondrial energy metabolism in tumour microenvironments[J]. J Biochem, 2012, 152(2): 171-183. doi: 10.1093/jb/mvs041

    [18]

    ENIAFE J, JIANG S. The functional roles of TCA cycle metabolites in cancer[J]. Oncogene, 2021, 40(19): 3351-3363. doi: 10.1038/s41388-020-01639-8

    [19]

    HU Y T, ZHOU W J, XUE Z Y, et al. Thiabendazole inhibits glioblastoma cell proliferation and invasion targeting mini-chromosome maintenance protein 2[J]. J Pharmacol Exp Ther, 2022, 380(1): 63-75. doi: 10.1124/jpet.121.000852

    [20]

    CHEN M, XU Y, HONG N, et al. Epidemiology of fungal infections in China[J]. Front Med, 2018, 12(1): 58-75. doi: 10.1007/s11684-017-0601-0

    [21] 郭海健, 彭春玲, 刘小霞. 两性霉素B雾化吸入加局部灌注联合伏立康唑治疗侵袭性肺部真菌感染研究[J]. 实用临床医药杂志, 2020, 24(14): 41-44. doi: 10.7619/jcmp.202014011
    [22]

    PERFECT J R, DISMUKES W E, DROMER F, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America[J]. Clin Infect Dis, 2010, 50(3): 291-322. doi: 10.1086/649858

    [23] 刘正印, 王贵强, 朱利平, 等. 隐球菌性脑膜炎诊治专家共识[J]. 中华内科杂志, 2018, 57(5): 317-323. doi: 10.3760/cma.j.issn.0578-1426.2018.05.003
    [24] 戴璐, 丁烨, 俞娟. 新生隐球菌研究进展[J]. 中华医院感染学杂志, 2018, 28(17): 2708-2711, 2715. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYY201817044.htm
    [25] 石洁君, 钱国清, 杨乃彬, 等. 伏立康唑治疗隐球菌感染的研究进展[J]. 国际呼吸杂志, 2020, 40(2): 156-160. doi: 10.3760/cma.j.issn.1673-436X.2020.02.015
  • 期刊类型引用(8)

    1. 秦琪,宋易坤,李彤. 宫颈癌腹腔镜根治术的疗效及手术部位感染的影响因素分析. 实用癌症杂志. 2024(05): 845-848 . 百度学术
    2. 王红利,王导利,林换弟. 经脐单孔腹腔镜盆腔淋巴结切除联合经阴道广泛子宫切除术治疗早期宫颈癌的临床疗效评价. 临床和实验医学杂志. 2024(07): 741-745 . 百度学术
    3. 曾海荣,黄丹,张建军,华海琴. 外周血CD4~+CD25~+、CD8~+CD28~+调节性T细胞水平对早期宫颈癌患者腹腔镜根治术后预后的预测价值. 中国临床新医学. 2024(07): 800-805 . 百度学术
    4. 李晓娟,陈宣彤. 健康行为改变理论对宫颈癌术后盆底肌功能及膀胱功能康复护理的影响. 实用妇科内分泌电子杂志. 2023(31): 144-146 . 百度学术
    5. 赵阳,张晓莲,王丹丹. 多孔腹腔镜根治术治疗宫颈癌的疗效及对患者负性情绪和预后的影响. 癌症进展. 2022(21): 2237-2240 . 百度学术
    6. 赵博,徐斌,王姣. 高危型人乳头瘤病毒检测对不同年龄段宫颈癌筛查临床研究. 临床军医杂志. 2021(07): 744-746 . 百度学术
    7. 李明明. 腹腔镜与开腹宫颈癌根治术治疗早期宫颈癌患者的效果比较. 中国民康医学. 2020(24): 130-132 . 百度学术
    8. 冯艳华. 经腹腔镜与开腹手术治疗早期宫颈癌的临床疗效及价值比较. 实用妇科内分泌电子杂志. 2020(07): 40+43 . 百度学术

    其他类型引用(1)

表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-03-25
  • 网络出版日期:  2022-09-02

目录

    /

    返回文章
    返回