全膝关节置换术后7 d内非感染性发热的影响因素分析及列线图模型构建

宗侠, 孙保安, 汪宗保

宗侠, 孙保安, 汪宗保. 全膝关节置换术后7 d内非感染性发热的影响因素分析及列线图模型构建[J]. 实用临床医药杂志, 2022, 26(17): 67-71. DOI: 10.7619/jcmp.20221171
引用本文: 宗侠, 孙保安, 汪宗保. 全膝关节置换术后7 d内非感染性发热的影响因素分析及列线图模型构建[J]. 实用临床医药杂志, 2022, 26(17): 67-71. DOI: 10.7619/jcmp.20221171
ZONG Xia, SUN Baoan, WANG Zongbao. Analysis in risk factors of non-infectious fever within 7 days after total knee arthroplasty and establishment of a nomogram model[J]. Journal of Clinical Medicine in Practice, 2022, 26(17): 67-71. DOI: 10.7619/jcmp.20221171
Citation: ZONG Xia, SUN Baoan, WANG Zongbao. Analysis in risk factors of non-infectious fever within 7 days after total knee arthroplasty and establishment of a nomogram model[J]. Journal of Clinical Medicine in Practice, 2022, 26(17): 67-71. DOI: 10.7619/jcmp.20221171

全膝关节置换术后7 d内非感染性发热的影响因素分析及列线图模型构建

基金项目: 

安徽省卫生健康委科研项目立项项目 AHWJ2021b052

详细信息
    通讯作者:

    汪宗保: 孙保安, E-mail: comicandball@163.com

  • 中图分类号: R684.3;R47

Analysis in risk factors of non-infectious fever within 7 days after total knee arthroplasty and establishment of a nomogram model

  • 摘要:
    目的 

    探讨全膝关节置换术(TKA)患者术后7 d内非感染性发热(NIF)的影响因素,并构建列线图预测模型进行验证,为临床早期诊断NIF提供简洁的量化工具。

    方法 

    采用回顾性队列研究方法,选取行单侧TKA的201例膝骨关节炎患者作为研究对象,根据术后7 d内是否发生NIF将患者分为NIF组57例和无NIF组144例。比较2组患者的临床资料,分别采用LASSO回归模型和多因素Logistic回归分析筛选NIF的影响因素,构建列线图模型并进行内部验证。

    结果 

    NIF组术中失血量、术后引流量、输血者、手术时间、抗生素使用时间和住院时间多于或长于无NIF组,差异均有统计学意义(P<0.05)。LASSO回归模型共筛选出4个具有非零特征的变量,即术中失血量、术后引流量、输血和手术时间。多因素Logistic回归分析显示,术中失血量(OR=3.652, 95%CI为2.856~3.958, P<0.001)、术后引流量(OR=2.857, 95%CI为2.242~3.234, P<0.001)、输血(OR=4.001, 95%CI为3.562~4.659, P<0.001)和手术时间(OR=1.859, 95%CI为1.326~2.525, P<0.001)均为TKA患者术后7 d内NIF的独立影响因素。应用R软件建立列线图模型,总分120分; 受试者工作特征(ROC)曲线显示,列线图模型预测NIF的曲线下面积(AUC)为0.865(95%CI为0.799~0.901), 提示该模型的区分度较好; Calibration校正曲线显示,该模型的一致性较好; 决策曲线分析(DCA)显示, NIF发生的风险阈值超过8%时,列线图模型的临床价值最大。

    结论 

    TKA患者术后7 d内NIF发生率较高,术中失血量、术后引流量、输血和手术时间均为NIF发生的独立影响因素。基于这些影响因素构建的列线图模型可视化效果较好,且预测NIF发生的效能较高。

    Abstract:
    Objective 

    To explore the risk factors of non-infectious fever (NIF) within 7 days after total knee arthroplasty (TKA), and to construct and verify the nomogram predictive model, so as to provide a concise and quantitative tool for clinical early diagnosis of NIF.

    Methods 

    A total of 201 patients with knee osteoarthritis underwent unilateral TKA were enrolled as study objects by retrospective cohort study. According to whether NIF occurred within 7 days after operation, the patients were divided into NIF group (n=57) and non-NIF group (n=144). The clinical data between the two groups were compared, and the risk factors of NIF were screened by LASSO regression and multivariate Logistic regression. The nomogram model was established and verified internally.

    Results 

    Compared with the non-NIF group, the intraoperative blood loss, postoperative drainage volume, the number of patients with blood transfusion, operation time, antibiotic use time and hospital stay in the NIF group were significantly more or longer(P < 0.05). LASSO regression screened four variables with non-zero characteristics, namely intraoperative blood loss, postoperative drainage volume, blood transfusion and operation time. Multivariate Logistic regression analysis showed that intraoperative blood loss (OR=3.652, 95%CI, 2.856 to 3.958, P < 0.001), postoperative drainage volume(OR=2.857, 95%CI, 2.242 to 3.234, P < 0.001), blood transfusion (OR=4.001, 95%CI, 3.562 to 4.659, P < 0.001) and operation time (OR=1.859, 95%CI, 1.326 to 2.525, P < 0.001) were the independent risk factors to NIF within 7 days after TKA. R software was used to establish the nomogram model, total score was 120. The receiver operating curve (ROC) showed that the area under the curve (AUC) of nomogram for predicting NIF was 0.865(95%CI, 0.799 to 0.901), suggesting that the discrimination of the model was good. Calibration correction curve showed a good consistency of the model. Decision curve analysis (DCA) showed that the clinical value of the model was the greatest when the risk threshold of NIF exceeded 8%.

    Conclusion 

    There is a high incidence of NIF within 7 days after TKA. Intraoperative blood loss, postoperative drainage volume, blood transfusion and operation time are the independent risk factors for the occurrence of NIF. The nomogram model constructed has good visualization effect, which has high efficiency in predicting the occurrence of NIF.

  • 图  1   NIF影响因素的LASSO回归分析

    A: 利用最小标准值和10倍交叉验证识别LASSO模型中的λ; B: 显示特征的套索系数剖面
    (使用10倍交叉验证在选定值处绘制垂直线,并利用最小标准值和最小标准值的1个标准误获得最佳值)。

    图  2   NIF的列线图模型

    图  3   列线图模型预测NIF的ROC曲线

    图  4   列线图模型预测NIF的Calibration校正曲线

    图  5   列线图模型预测NIF的DCA结果

    表  1   NIF的单因素分析(x±s)[M(P25, P75)][n(%)]

    指标 无NIF组(n=144) NIF组(n=57) Z/t/χ2 P
    性别 28(19.4) 14(24.6) 0.314 0.575
    116(80.6) 43(75.4)
    年龄/岁 65.6±5.3 67.8±5.9 0.659 0.324
    高血压 52(36.1) 18(31.6) 0.370 0.543
    糖尿病 29(20.1) 7(12.3) 1.715 0.190
    手术时间/min 177.9(126.5, 223.6) 212.5(165.4, 265.8) 2.063 <0.001
    术前体温/℃ 36.8±0.4 36.7±0.3 0.235 0.867
    术中失血量/mL 280.3(140.2, 420.3) 385.3(250.5, 530.6) 2.659 <0.001
    术后引流量/mL 160.8(90.5, 320.8) 280.6(110.7, 450.9) 3.002 <0.001
    输血 9(6.3) 13(22.8) 11.485 <0.001
    抗生素使用时间/d 4.6(3.5, 7.5) 9.5(5.5, 15.5) 1.958 <0.001
    住院时间/d 8.2±2.3 14.6±3.5 5.659 <0.001
    下载: 导出CSV

    表  2   NIF影响因素的多因素Logistic回归分析

    因素 β Wald P OR 95%CI
    术中失血量 1.325 10.524 <0.001 3.652 2.856~3.958
    术后引流量 1.002 8.623 <0.001 2.857 2.242~3.234
    输血 1.712 16.596 <0.001 4.001 3.562~4.659
    手术时间 0.758 5.965 <0.001 1.859 1.326~2.525
    下载: 导出CSV
  • [1] 毛建杰, 徐兵, 王庆. 全膝关节置换术对老年膝骨关节炎患者的疗效及生活质量的影响[J]. 实用临床医药杂志, 2018, 22(1): 84-87. doi: 10.7619/jcmp.201801026
    [2]

    ASCIONE T, BALATO G, BOCCIA G, et al. Predictive value of fever following arthroplasty in diagnosing an early infection[J]. Infez Med, 2017, 25(1): 3-7.

    [3]

    WEINBERG L, LI M, CHURILOV L, et al. Associations of fluid amount, type, and balance and acute kidney injury in patients undergoing major surgery[J]. Anaesth Intensive Care, 2018, 46(1): 79-87. doi: 10.1177/0310057X1804600112

    [4]

    VLGER F, PEHLIVANLAR ÜVÇÜK M, ÖZTÜRK Ö E, et al. Non-infectious fever after acute spinal cord injury in the intensive care unit[J]. J Spinal Cord Med, 2019, 42(3): 310-317. doi: 10.1080/10790268.2017.1387715

    [5] 中华医学会骨科分会关节外科学组, 吴阶平医学基金会骨科学专家委员会. 膝骨关节炎阶梯治疗专家共识(2018年版)[J]. 中华关节外科杂志: 电子版, 2019, 13(1): 124-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGJ201901024.htm
    [6] 李冉, 宋为群, 杜巨豹. 膝关节置换术快速康复研究进展[J]. 中国康复, 2018, 33(4): 341-344. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLKF201804033.htm
    [7]

    WRIGHT W F, AUWAERTER P G. Fever and fever of unknown origin: review, recent advances, and lingering dogma[J]. Open Forum Infect Dis, 2020, 7(5): ofaa132. doi: 10.1093/ofid/ofaa132

    [8]

    SHOHAT N, GOSWAMI K, TAN T L, et al. Fever and erythema are specific findings in detecting infection following total knee arthroplasty[J]. J Bone Jt Infect, 2019, 4(2): 92-98. doi: 10.7150/jbji.30088

    [9]

    MAYO B C, HAWS B E, BOHL D D, et al. Postoperative fever evaluation following lumbar fusion procedures[J]. Neurospine, 2018, 15(2): 154-162. doi: 10.14245/ns.1836026.013

    [10]

    LAI H F, CHAU I Y, LEI H J, et al. Postoperative fever after liver resection: Incidence, risk factors, and characteristics associated with febrile infectious complication[J]. PLoS One, 2022, 17(1): e0262113. doi: 10.1371/journal.pone.0262113

    [11]

    OBANA K K, LIN A J, YANG J, et al. Fever after Varus derotational osteotomy is common, but not a risk factor for infection[J]. Medicine: Baltimore, 2020, 99(1): e18613. doi: 10.1097/MD.0000000000018613

    [12]

    CHENG E, LEWIN A, CHURCHES T, et al. Cost of investigations during the acute hospital stay following total hip or knee arthroplasty, by complication status[J]. BMC Health Serv Res, 2020, 20(1): 1036. doi: 10.1186/s12913-020-05892-1

    [13]

    WANG H, FAN T, LI W, et al. A nomogram to predict the risk of prolonged length of stay following primary total hip arthroplasty with an enhanced recovery after surgery program[J]. J Orthop Surg Res, 2021, 16(1): 716. doi: 10.1186/s13018-021-02877-6

    [14] 李清山, 王志强, 孙官军, 等. 髋关节置换术后放置引流减少非感染性发热时间[J]. 安徽医药, 2019, 23(12): 2458-2462. https://www.cnki.com.cn/Article/CJFDTOTAL-AHYY201912034.htm
    [15]

    FENG B, LIN J, JIN J, et al. Thirty-day postoperative complications following primary total knee arthroplasty: a retrospective study of incidence and risk factors at a single center in China[J]. Chin Med J: Engl, 2017, 130(21): 2551-2556.

    [16] 陈登, 张亚鑫, 戴纪杭, 等. 人工髋关节置换后发热的相关因素分析[J]. 中国组织工程研究, 2021, 25(18): 2846-2850. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202118014.htm
    [17] 李在雨, 陈子阳, 关北漩, 等. 颅脑创伤术后非感染性发热的原因分析与处理[J]. 中华神经创伤外科电子杂志, 2020, 6(4): 241-243. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCW202004014.htm
    [18] 黄玉麟, 张应彬, 苏保华, 等. 单侧初次全髋关节置换术围手术期发热特点及其预后分析[J]. 中华关节外科杂志: 电子版, 2017, 11(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGJ201702001.htm
    [19] 陈兆平, 丁玉喜, 沈靖, 等. 4种血清感染指标在关节置换术患者早期发热中的监测评价[J]. 中华医院感染学杂志, 2016, 26(13): 2893-2895. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYY201613005.htm
    [20] 许伟亮, 蔡东岭, 郭伟俊. 腰椎融合术后发热特点趋势及预后分析[J]. 实用骨科杂志, 2019, 25(4): 289-292. https://www.cnki.com.cn/Article/CJFDTOTAL-SGKZ201904001.htm
图(5)  /  表(2)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  118
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-10
  • 网络出版日期:  2022-09-20

目录

    /

    返回文章
    返回
    x 关闭 永久关闭