RhoA/ROCK通路调控小胶质细胞极化的研究进展

肖迎港, 高巨

肖迎港, 高巨. RhoA/ROCK通路调控小胶质细胞极化的研究进展[J]. 实用临床医药杂志, 2022, 26(20): 136-141, 148. DOI: 10.7619/jcmp.20221217
引用本文: 肖迎港, 高巨. RhoA/ROCK通路调控小胶质细胞极化的研究进展[J]. 实用临床医药杂志, 2022, 26(20): 136-141, 148. DOI: 10.7619/jcmp.20221217
XIAO Yinggang, GAO Ju. Research progress in regulation of microglial polarization by RhoA/ROCK signaling pathway[J]. Journal of Clinical Medicine in Practice, 2022, 26(20): 136-141, 148. DOI: 10.7619/jcmp.20221217
Citation: XIAO Yinggang, GAO Ju. Research progress in regulation of microglial polarization by RhoA/ROCK signaling pathway[J]. Journal of Clinical Medicine in Practice, 2022, 26(20): 136-141, 148. DOI: 10.7619/jcmp.20221217

RhoA/ROCK通路调控小胶质细胞极化的研究进展

基金项目: 

国家自然科学基金资助项目 82172190

详细信息
    通讯作者:

    高巨, E-mail: doctor2227@163.com

  • 中图分类号: R741.02;R363.2

Research progress in regulation of microglial polarization by RhoA/ROCK signaling pathway

  • 摘要:

    小胶质细胞广泛参与中枢神经系统的多种病理生理过程, 其极化特性则与神经元的炎症反应和损伤修复密切相关。Ras同源基因家族蛋白A(RhoA)/Rho相关卷曲螺旋蛋白激酶(ROCK)信号通路对小胶质细胞极化具有重要的调控功能。目前,通过促进小胶质细胞M2型极化治疗神经元受损的相关研究已成为神经科学领域的热点之一,但RhoA/ROCK通路对极化的调控作用仍未明确。本文综述RhoA/ROCK信号通路对小胶质细胞极化的影响,以期为脑保护分子机制研究及临床治疗提供新思路。

    Abstract:

    Microglia are widely involved in various pathophysiological processes of the central nervous system, and their polarization characteristics are closely related to the inflammatory response and injury repair of neurons. Ras homologous gene family protein A (RhoA)/Rho-associated coiled-coil protein kinase (ROCK) signaling pathway plays an important role in regulating microglia polarization. At present, the related research on the treatment of neuronal damage by promoting microglial M2-type polarization has become one of the hot spots in the field of neuroscience, but the effect of RhoA/ROCK pathway on polarization is still unclear. This article reviewed the effect of RhoA/ROCK signaling pathway on microglial polarization in order to provide new ideas for the study of molecular mechanism of brain protection and clinical treatment.

  • 精神疾病康复是指使用现代治疗手段和技术对精神患者进行精神上、心理上及职业上的康复,主要目的是通过各种康复措施以及康复训练使患者尽快恢复社会功能,为患者重建社会功能[1], 提高其生活质量,减少致残率,防止精神疾病复发,使患者症状缓解后能顺利回归社会,减少或延缓精神残疾的发生,也是精神科从业人员的重要任务之一[2]。有学者提出,精神康复过程包括住院康复和社会功能康复,强调注重每一环节的康复,给患者提供最有优质的精神康复服务。而病房是精神病患者康复过程的起点,精神康复工作需在医院进行,必须实行院内与社区康复训练并重[1]。为了解南通地区住院精神病患者的精神康复现状,特对南通地区9所精神病专科医院住院患者进行调查,现将调查结果报告如下。

    本调查以南通地区9所精神病专科医院2018年9—10月200例住院精神患者为调查对象。所有参加问卷调查的患者均签署知情同意书。纳入标准: ①符合ICD-10疾病诊断标准; ②处于疾病恢复期; ③能阅读和理解问卷内容,配合调查。排除标准: ①有冲动行为; ②无家属陪同者; ③精神症状明显,不能进行正常交流者。共发放问卷200份,回收有效问卷192份,有效问卷率96.00%。192例患者中,年龄15~77岁,平均(44.10±12.29)岁; 男129例,女63例; 文化程度: 大专以上33例,高中36例,初中94例,小学26例,文盲3例; 婚姻状况: 已婚33例,丧偶9例,离异53例,未婚97例; 精神疾病类型: 精神分裂症78.10%(150/192), 心境障碍12.00%(23/192), 精神发育迟滞所致精神障碍3.10%(6/192), 其他精神障碍6.80%(13/192)。

    本调查采用自行设计问卷调查表对9家精神病专科医院的200例符合纳入标准的住院患者进行现场调查。问卷经过课题小组讨论,查找文献后拟定条目,再通过预调查最终修订而成。调查内容包括住院精神患者的一般情况、对精神康复的了解及参与度、参加精神康复活动的满意度、希望参加住院精神康复的项目、不愿意参加精神康复的主要原因等条目。

    正式调查前严格审查问卷并制作临床研究评定表,召开会议培训调查人员,以保证调查的同质性。回收调查问卷后严格进行检查,将无效问卷剔除。所得数据应用SPSS 17.0软件进行统计分析。

    在对精神康复概念的了解方面,了解占8.30%(16/192), 部分了解占75.00%(144/192), 不了解占16.70%(32/192)。对精神康复的认识上, 68.20%(131/192)的患者认为精神康复对工作、生活、学习会有一定的帮助, 31.80%(61/192)的患者认为精神康复没有太大意义。

    在参加住院精神康复治疗方面,经常参加的占31.80% (61/192), 有时参加占21.90%(42/192), 46.40%(89/192)的患者没有或偶尔参加精神康复治疗。在参加精神康复活动的103例中,满意占87.40%(90/103), 不满意占12.60%(13/103), 不满意的主要原因为对康复治疗没有兴趣。

    在是否愿意参加精神康复治疗的调查中, 95.30%(183/192)的患者愿意参加精神康复治疗, 4.69%(9/192)的患者不愿意参加。在希望参加的精神康复项目中,作业治疗占87.00%(167/192)、心理治疗占69.30%(133/192)、音乐治疗占70.80%(136/192)、职业技能训练占46.40%(89/192)、其他项目占16.70%(32/192), 有7例患者提出出院后最好能到社区康复继续治疗。

    所调查人员中, 97.40%(187/192)的患者有社会医疗保险(包括城镇职工基本医疗保险、居民医保、新农合)或商业医疗保险, 2.60%(5/192)为全自费。在自费承担精神康复治疗费用方面, 13.50%(26/192)的患者表示全部可以承担, 40.10%(77/192)的患者可以部分承担, 46.40%(89/192)的患者表示不能承担。

    精神疾病是一种慢性迁延性疾病,病因不明,发病机制复杂,患者在思维、情感、意志行为等方面表现明显不协调,患者的生命质量与社会功能明显受损[3]。研究[4]表明,精神疾病及精神残疾的患病率均呈上升趋势。近年来,国内各精神病专科医院相继开展了多种康复训练模式及项目以改善患者的各项社会功能,均取得了显著的效果[5-7]。事实证明,精神康复在精神疾病的治疗及康复过程中发挥着重要作用,已成为不可忽视的精神卫生问题[1]。本调查结果显示, 91.70%患者对精神康复概念只有部分了解或完全不了解, 31.80%患者认为精神康复没有太大意义,可见精神康复对多数患者来说是一个陌生的概念,治疗效果容易被忽视。因此,各级精神病专科医院要进一步重视精神康复问题,通过多种途径宣传精神康复治疗的相关知识。在本调查发现结果表明,患者对康复理念的认知不够深入,提示今后工作中医护人员要通过适当的方法向患者及家属普及精神康复的相关知识,以提高认可度和参与积极性。

    同时,因地制宜地改善精神康复条件,加强精神康复治疗的基础设施建设也尤为重要。在本调查的9所医院中,只有1家三级专科医院设有精神康复中心且设施比较齐全,其余医院部分有活动场所,部分医院是以饭厅兼活动场所,精神康复形式比较简单,内容比较单一,缺乏规范性、系统性、连续性。因此,各级精神病专科医院对精神康复场地要进行科学规划,合理布局,添加康复设施,为住院精神病患者提供良好的精神康复治疗环境。本研究调查中发现,9所医院中共有15名从事精神康复工作的医务人员,其中3名康复技师,其余均为护士,接受过精神科康复进修或培训的人员占73.33%, 康复技师和进修人员均集中在南通地区唯一的一家三级精神病专科医院。要规范做好住院精神患者的康复治疗工作,首先必须有一支专业的康复团队,精神病专科医院应加大对精神康复专业人员的引进。其次,要加大对从事康复人员的培训力度,提供培训进修学习的机会,培养优秀康复技术人才。此外,康复工作人员应使精神康复的理念先进化,内容系统化,方法科学化,形式多样化,不断提升康复工作的内涵质量和服务能力,构建精神康复工作的长效机制,提升患者对精神康复工作的满意度。

    2016年3月,人力资源社会保障部等五部委联合发布了“关于新增部分医疗康复项目纳入基本医疗保障支付范围的通知”,将康复综合评定、精神障碍作业疗法训练等20项医疗康复项目纳入基本医疗保险支付范围,这对于保障精神疾病参保人员基本医疗康复需求起到了积极作用。随着医疗水平的提高,精神康复事业的发展,有更多更好的精神康复技术可用于临床,康复训练已成为精神患者治疗护理的关键[8-10]。但目前南通市职工居民医保精神病专科治疗项目中,仍有近一半的项目是全自费或部分自费的,其中包括工娱治疗、音乐治疗、心理治疗等。本调查中46.4%的患者表示无力承担精神康复的自费费用。为进一步促进精神患者的康复,希望政府继续给予政策支持,进一步加大精神卫生投入,增加精神康复项目的报销种类和比例,不断完善医疗保障体系,使患者的精神康复治疗得到有效保障。同时,精神病专科医院要不断探索精神康复模式和方法,扩大住院精神患者的康复受益面和参与度。

  • 图  1   RhoA/ROCK通路调控小胶质细胞极化示意图

  • [1]

    GUO M F, ZHANG H Y, LI Y H, et al. Fasudil inhibits the activation of microglia and astrocytes of transgenic Alzheimer′s disease mice via the downregulation of TLR4/Myd88/NF-κB pathway[J]. J Neuroimmunol, 2020, 346: 577284. doi: 10.1016/j.jneuroim.2020.577284

    [2]

    MEI B, LI J, ZUO Z Y. Dexmedetomidine attenuates Sepsis-associated inflammation and encephalopathy via central α2A adrenoceptor[J]. Brain Behav Immun, 2021, 91: 296-314. doi: 10.1016/j.bbi.2020.10.008

    [3]

    MARINO LEE S, HUDOBENKO J, MCCULLOUGH L D, et al. Microglia depletion increase brain injury after acute ischemic stroke in aged mice[J]. Exp Neurol, 2021, 336: 113530. doi: 10.1016/j.expneurol.2020.113530

    [4]

    XIONG X Y, LIU L, YANG Q W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke[J]. Prog Neurobiol, 2016, 142: 23-44. doi: 10.1016/j.pneurobio.2016.05.001

    [5]

    YE Y Z, JIN T, ZHANG X, et al. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway[J]. Front Cell Neurosci, 2019, 13: 553. doi: 10.3389/fncel.2019.00553

    [6]

    IRING A, TÓTH A, BARANYI M, et al. The dualistic role of the purinergic P2Y12-receptor in an in vivo model of Parkinson's disease: signalling pathway and novel therapeutic targets[J]. Pharmacol Res, 2022, 176: 106045. doi: 10.1016/j.phrs.2021.106045

    [7]

    LIU Y L, WU C F, HOU Z J, et al. Pseudoginsenoside-F11 accelerates microglial phagocytosis of myelin debris and attenuates cerebral ischemic injury through complement receptor 3[J]. Neuroscience, 2020, 426: 33-49. doi: 10.1016/j.neuroscience.2019.11.010

    [8]

    ZANDI S, NAKAO S, CHUN K H, et al. ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration[J]. Cell Rep, 2015, 10(7): 1173-1186. doi: 10.1016/j.celrep.2015.01.050

    [9]

    VAROL C, MILDNER A, JUNG S. Macrophages: development and tissue specialization[J]. Annu Rev Immunol, 2015, 33: 643-675. doi: 10.1146/annurev-immunol-032414-112220

    [10]

    SAIJO K, GLASS C K. Microglial cell origin and phenotypes in health and disease[J]. Nat Rev Immunol, 2011, 11(11): 775-787. doi: 10.1038/nri3086

    [11]

    WANG J. Preclinical and clinical research on inflammation after intracerebral hemorrhage[J]. Prog Neurobiol, 2010, 92(4): 463-477. doi: 10.1016/j.pneurobio.2010.08.001

    [12]

    GINHOUX F, GRETER M, LEBOEUF M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005): 841-845. doi: 10.1126/science.1194637

    [13]

    CHIOT A, ZAÏDI S, ILTIS C, et al. Modifying macrophages at the periphery has the capacity to change microglial reactivity and to extend ALS survival[J]. Nat Neurosci, 2020, 23(11): 1339-1351. doi: 10.1038/s41593-020-00718-z

    [14]

    XU Y, CUI K X, LI J, et al. Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway[J]. J Pineal Res, 2020, 69(1): e12660.

    [15] 庄欣琪, 王玉尊, 王瑶琪, 等. 氢对LPS致BV-2小胶质细胞炎症反应的影响及自噬在其中的作用[J]. 中华麻醉学杂志, 2020, 40(3): 350-354. doi: 10.3760/cma.j.cn131073.20190726.00324
    [16]

    HU X M, LEAK R K, SHI Y J, et al. Microglial and macrophage polarization—new prospects for brain repair[J]. Nat Rev Neurol, 2015, 11(1): 56-64. doi: 10.1038/nrneurol.2014.207

    [17] 刘太聪, 史永强, 张海鸿. 间充质干细胞在神经病理性疼痛中的作用及机制研究[J]. 实用临床医药杂志, 2022, 26(6): 113-117. doi: 10.7619/jcmp.20213816
    [18]

    ZHANG L J, ZHANG J Q, YOU Z L. Switching of the microglial activation phenotype is a possible treatment for depression disorder[J]. Front Cell Neurosci, 2018, 12: 306.

    [19]

    LARSON-CASEY J L, VAID M, GU L L, et al. Increased flux through the mevalonate pathway mediates fibrotic repair without injury[J]. J Clin Invest, 2019, 129(11): 4962-4978. doi: 10.1172/JCI127959

    [20]

    ALVES A, DIEL L, RAMOS G, et al. Tumor microenvironment and Oral Squamous Cell Carcinoma: a crosstalk between the inflammatory state and tumor cell migration[J]. Oral Oncol, 2021, 112: 105038. doi: 10.1016/j.oraloncology.2020.105038

    [21]

    ZHENG Y, HE R Y, WANG P, et al. Exosomes from LPS-stimulated macrophages induce neuroprotection and functional improvement after ischemic stroke by modulating microglial polarization[J]. Biomater Sci, 2019, 7(5): 2037-2049. doi: 10.1039/C8BM01449C

    [22]

    TANG Y Y, HE Y, ZHANG P, et al. LncRNAs regulate the cytoskeleton and related Rho/ROCK signaling in cancer metastasis[J]. Mol Cancer, 2018, 17(1): 77. doi: 10.1186/s12943-018-0825-x

    [23]

    HEMKEMEYER S A, VOLLMER V, SCHWARZ V, et al. Local Myo9b RhoGAP activity regulates cell motility[J]. J Biol Chem, 2021, 296: 100136. doi: 10.1074/jbc.RA120.013623

    [24]

    GARCÍA-MARISCAL A, LI H, PEDERSEN E, et al. Loss of RhoA promotes skin tumor formation and invasion by upregulation of RhoB[J]. Oncogene, 2018, 37(7): 847-860. doi: 10.1038/onc.2017.333

    [25]

    ALKASALIAS T, ALEXEYENKO A, HENNIG K, et al. RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo[J]. Proc Natl Acad Sci USA, 2017, 114(8): E1413-E1421.

    [26]

    LAI A Y, MCLAURIN J. Rho-associated protein kinases as therapeutic targets for both vascular and parenchymal pathologies in Alzheimer's disease[J]. J Neurochem, 2018, 144(5): 659-668. doi: 10.1111/jnc.14130

    [27]

    LU W Z, WEN J Y, CHEN Z W. Distinct roles of ROCK1 and ROCK2 on the cerebral ischemia injury and subsequently neurodegenerative changes[J]. Pharmacology, 2020, 105(1/2): 3-8.

    [28]

    SZASZ T, WEBB R C. Rho-mancing to sensitize calcium signaling for contraction in the vasculature: role of rho kinase[J]. Adv Pharmacol, 2017, 78: 303-322.

    [29]

    KANG H, YANG B G, ZHANG K Y, et al. Immunoregulation of macrophages by dynamic ligand presentation via ligand-cation coordination[J]. Nat Commun, 2019, 10(1): 1696. doi: 10.1038/s41467-019-09733-6

    [30]

    KANG H, WONG S H D, PAN Q, et al. Anisotropic ligand nanogeometry modulates the adhesion and polarization state of macrophages[J]. Nano Lett, 2019, 19(3): 1963-1975. doi: 10.1021/acs.nanolett.8b05150

    [31]

    BORRAJO A, RODRIGUEZ-PEREZ A I, VILLAR-CHEDA B, et al. Inhibition of the microglial response is essential for the neuroprotective effects of Rho-kinase inhibitors on MPTP-induced dopaminergic cell death[J]. Neuropharmacology, 2014, 85: 1-8. doi: 10.1016/j.neuropharm.2014.05.021

    [32]

    XUE H, ZHANG Y H, GAO Q S, et al. Sevoflurane post-conditioning ameliorates neuronal deficits and axon demyelination after neonatal hypoxic ischemic brain injury: role of microglia/macrophage[J]. Cell Mol Neurobiol, 2021, 41(8): 1801-1816. doi: 10.1007/s10571-020-00949-5

    [33]

    YU J G, OGAWA K, TOKINAGA Y, et al. Sevoflurane inhibits guanosine 5′-[gamma-thio]triphosphate-stimulated, Rho/Rho-kinase-mediated contraction of isolated rat aortic smooth muscle[J]. Anesthesiology, 2003, 99(3): 646-651. doi: 10.1097/00000542-200309000-00020

    [34]

    ZHANG H F, LI Y H, YU J Z, et al. Rho kinase inhibitor fasudil regulates microglia polarization and function[J]. Neuroimmunomodulation, 2013, 20(6): 313-322. doi: 10.1159/000351221

    [35]

    WEI H X, YAO P S, CHEN P P, et al. Neuronal EphA4 regulates OGD/R-induced apoptosis by promoting alternative activation of microglia[J]. Inflammation, 2019, 42(2): 572-585. doi: 10.1007/s10753-018-0914-4

    [36]

    JING F, ZHANG Y X, LONG T, et al. P2Y12 receptor mediates microglial activation via RhoA/ROCK pathway in the trigeminal nucleus caudalis in a mouse model of chronic migraine[J]. J Neuroinflammation, 2019, 16(1): 217. doi: 10.1186/s12974-019-1603-4

    [37]

    CHEN C, LI Y H, ZHANG Q, et al. Fasudil regulates T cell responses through polarization of BV-2 cells in mice experimental autoimmune encephalomyelitis[J]. Acta Pharmacol Sin, 2014, 35(11): 1428-1438. doi: 10.1038/aps.2014.68

    [38]

    ZHANG X X, YE P, WANG D D, et al. Involvement of RhoA/ROCK signaling in aβ-induced chemotaxis, cytotoxicity and inflammatory response of microglial BV2 cells[J]. Cell Mol Neurobiol, 2019, 39(5): 637-650. doi: 10.1007/s10571-019-00668-6

    [39]

    LU E M, WANG Q, LI S C, et al. Profilin 1 knockdown prevents ischemic brain damage by promoting M2 microglial polarization associated with the RhoA/ROCK pathway[J]. J Neurosci Res, 2020, 98(6): 1198-1212. doi: 10.1002/jnr.24607

    [40]

    REFOLO V, STEFANOVA N. Neuroinflammation and glial phenotypic changes in alpha-synucleinopathies[J]. Front Cell Neurosci, 2019, 13: 263.

    [41]

    SACKMANN V, ANSELL A, SACKMANN C, et al. Anti-inflammatory (M2) macrophage media reduce transmission of oligomeric amyloid beta in differentiated SH-SY5Y cells[J]. Neurobiol Aging, 2017, 60: 173-182. doi: 10.1016/j.neurobiolaging.2017.08.022

    [42] 张琳, 张伟, 张加强, 等. 利多卡因对大鼠内毒素性肺损伤时Rho/ROCK信号通路的影响[J]. 中华麻醉学杂志, 2019, 39(1): 109-112. doi: 10.3760/cma.j.issn.0254-1416.2019.01.028
    [43]

    SCHEIBLICH H, BICKER G. Regulation of microglial phagocytosis by RhoA/ROCK-inhibiting drugs[J]. Cell Mol Neurobiol, 2017, 37(3): 461-473. doi: 10.1007/s10571-016-0379-7

    [44]

    PENG F, LU L Y, WEI F, et al. The onjisaponin B metabolite tenuifolin ameliorates dopaminergic neurodegeneration in a mouse model of Parkinson′s disease[J]. Neuroreport, 2020, 31(6): 456-465. doi: 10.1097/WNR.0000000000001428

    [45]

    WONG S S C, LEE U M, WANG X M, et al. Role of DLC2 and RhoA/ROCK pathway in formalin induced inflammatory pain in mice[J]. Neurosci Lett, 2019, 709: 134379. doi: 10.1016/j.neulet.2019.134379

    [46]

    LEE J, VILLARREAL O D, CHEN X R, et al. QUAKING regulates microexon alternative splicing of the rho GTPase pathway and controls microglia homeostasis[J]. Cell Rep, 2020, 33(13): 108560. doi: 10.1016/j.celrep.2020.108560

    [47]

    VILLAR-CHEDA B, DOMINGUEZ-MEIJIDE A, JOGLAR B, et al. Involvement of microglial RhoA/Rho-kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors[J]. Neurobiol Dis, 2012, 47(2): 268-279. doi: 10.1016/j.nbd.2012.04.010

    [48]

    HAN X N, LAN X, LI Q, et al. Inhibition of prostaglandin E2 receptor EP3 mitigates thrombin-induced brain injury[J]. J Cereb Blood Flow Metab, 2016, 36(6): 1059-1074. doi: 10.1177/0271678X15606462

    [49]

    ZHU M M, LIN J H, QING P, et al. Manual acupuncture relieves microglia-mediated neuroinflammation in a rat model of traumatic brain injury by inhibiting the RhoA/ROCK2 pathway[J]. Acupunct Med, 2020, 38(6): 426-434. doi: 10.1177/0964528420912248

    [50]

    QIAN Z Y, CHEN H T, XIA M J, et al. Activation of glucagon-like peptide-1 receptor in microglia attenuates neuroinflammation-induced glial scarring via rescuing Arf and Rho GAP adapter protein 3 expressions after nerve injury[J]. Int J Biol Sci, 2022, 18(4): 1328-1346. doi: 10.7150/ijbs.68974

    [51]

    KISHIMA K, TACHIBANA T, YAMANAKA H, et al. Role of Rho-associated coiled-coil containing protein kinase in the spinal cord injury induced neuropathic pain[J]. Spine J, 2021, 21(2): 343-351. doi: 10.1016/j.spinee.2020.08.011

    [52]

    TATSUMI E, YAMANAKA H, KOBAYASHI K, et al. RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain[J]. Glia, 2015, 63(2): 216-228. doi: 10.1002/glia.22745

    [53]

    MUESSEL M J, HARRY G J, ARMSTRONG D L, et al. SDF-1α and LPA modulate microglia potassium channels through rho gtpases to regulate cell morphology[J]. Glia, 2013, 61(10): 1620-1628. doi: 10.1002/glia.22543

    [54]

    MOON M Y, KIM H J, LI Y, et al. Involvement of small GTPase RhoA in the regulation of superoxide production in BV2 cells in response to fibrillar Aβ peptides[J]. Cell Signal, 2013, 25(9): 1861-1869. doi: 10.1016/j.cellsig.2013.05.023

    [55]

    DE CARIS M G, GRIECO M, MAGGI E, et al. Blueberry counteracts BV-2 microglia morphological and functional switch after LPS challenge[J]. Nutrients, 2020, 12(6): 1830. doi: 10.3390/nu12061830

    [56]

    KOCH J C, KUTTLER J, MAASS F, et al. Compassionate use of the ROCK inhibitor fasudil in three patients with amyotrophic lateral sclerosis[J]. Front Neurol, 2020, 11: 173. doi: 10.3389/fneur.2020.00173

  • 期刊类型引用(4)

    1. 江军建,万子昂. 解剖性痔切除半闭锁缝合联合痔上黏膜结扎术治疗混合痔的效果观察. 浙江创伤外科. 2025(03): 521-523 . 百度学术
    2. 邓宏嫄,吴雪清,马奔,李月香. 快速康复外科结合耳穴压豆护理对混合痔患者术后恢复及VAS评分、睡眠的影响. 中国医药指南. 2024(03): 153-155 . 百度学术
    3. 崔春辉,谢振年,赫兰晔,李东冰,姜威,赵卫兵. 枯痔钉微创理念铜离子电化学疗法治疗混合痔1例报告. 中国中西医结合外科杂志. 2024(04): 577-580 . 百度学术
    4. 康石英,许元红,张瑞丽. 基于生长因子水平探讨中药湿敷在混合痔患者术后康复中的应用价值及其对肛门功能的影响. 临床医药实践. 2024(12): 940-943 . 百度学术

    其他类型引用(0)

图(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-04-12
  • 网络出版日期:  2022-11-03

目录

/

返回文章
返回
x 关闭 永久关闭