原发性干燥综合征合并血液系统受累的危险因素分析

Analysis of risk factors for primary Sjögren's syndrome complicated with hematological involvement

  • 摘要:
    目的 分析原发性干燥综合征(pSS)合并血液系统损害患者的临床特征,并建立预测模型。
    方法 收集183例pSS患者的临床表现、实验室检查结果,对合并(n=109)或不合并(n=74)血液系统损害的pSS患者进行对比分析,采用Logistic回归方法分析pSS患者合并血液系统损害的相关因素。建立pSS合并血液系统损害的多因素逻辑回归(MLR)预测模型和人工神经网络(ANN)预测模型,绘制受试者工作特征曲线并比较2种模型的基本参数和曲线下面积(AUC), 以评估模型预测效能。
    结果 Logistic回归分析显示,肝脏受累(OR=0.191, P < 0.05, 95%CI: 0.070~0.524)、皮肤受累(OR=0.292, P < 0.05, 95%CI: 0.121~0.704)、低白蛋白血症(OR=0.840, P < 0.05, 95%CI: 0.743~0.948)、低钾血症(OR=0.351, P < 0.05, 95%CI: 0.145~0.846)、高免疫球蛋白M(IgM)(OR=1.732, P < 0.05, 95%CI: 1.085~2.765)、高红细胞沉降率(ESR)(OR=1.028, P < 0.05, 95%CI: 1.005~1.051)和抗SSA抗体阳性(OR=0.21, P < 0.05, 95%CI: 0.052~0.828)是pSS患者合并血液系统损害的危险因素。在预测血小板和白细胞下降方面, MLR和ANN模型的预测效能比较,差异无统计学意义(P>0.05)。ANN模型对血红蛋白下降方面的预测效能优于MLR模型,差异有统计学意义(P < 0.05)。
    结论 pSS患者发生血液系统损害的风险较高。肝脏功能异常、皮肤受累、低白蛋白血症、低钾血症、高IgM、高ESR和抗SSA抗体阳性是pSS患者血液系统受累的危险因素。ANN和MLR模型是基于本研究的原始数据开发的2个有效预测工具,可考虑应用于临床。

     

    Abstract:
    Objective To analyze clinical characteristics of patients with primary Sjögren's syndrome (pSS) complicated with hematological damage and to established the prediction models.
    Methods The clinical characteristics and laboratory tests imaging examinations of 183 pSS patients were collected. A comparative analysis of pSS patients with hematological damage (n=109) or without hematological damage(n=74)was performed. Logistic regression was used to analyze the related factors of patients with pSS complicated with blood system damage. Prediction models of primary Sjögren's syndrome with hematological involvement based on artificial neural network (ANN) and multi-Logistic regression (MLR) were established, the receiver operating characteristic curve was drawn; and the area under the curve (AUC) and the basic parameters of the two models were compared to evaluate their predictive effectiveness of the models.
    Results Logistic regression analysis showed that liver involvement (OR=0.191, P < 0.05, 95%CI, 0.070 to 0.524), skin involvement (OR=0.292, P < 0.05, 95%CI, 0.121 to 0.704), hypoalbuminemia (OR=0.840, P < 0.05, 95%CI, 0.743 to 0.948), hypokalemia (OR=0.351, P < 0.05, 95%CI, 0.145 to 0.846), high immune globulin (IgM)(OR=1.732, P < 0.05, 95%CI, 1.085 to 2.765), high erythrocyte sedimentation rate (ESR) (OR=1.028, P < 0.05, 95%CI, 1.005 to 1.051) and positive anti-SSA antibodies (OR=0.21, P < 0.05, 95%CI, 0.052 to 0.828)were risk factors associated with hematologic involvement in patients with pSS. There was no significant difference between MLR and ANN models in predicting platelet and leukocyte decline (P>0.05). ANN model was better than MLR model in predicting hemoglobin decline, and the difference was statistically significant (P < 0.05).
    Conclusion Patients with pSS are more likely to suffer hematologic damage. Dysfunction of liver, skin involvement, hypoalbuminemia, hypokalemia, high IgM, high ESR and positive anti-SSA antibodies in clinical works are risk factors for blood system involvement in patients with pSS. ANN and MLR models are two validated predictive modeling tools developed based on the original data from this study, and could be considered for clinical application.

     

/

返回文章
返回