脱氧核糖核酸拓扑异构酶Ⅱβ结合蛋白1与肿瘤的研究进展

茅静贤, 王佳欣, 严雪冰, 王颖

茅静贤, 王佳欣, 严雪冰, 王颖. 脱氧核糖核酸拓扑异构酶Ⅱβ结合蛋白1与肿瘤的研究进展[J]. 实用临床医药杂志, 2023, 27(9): 137-142. DOI: 10.7619/jcmp.20223800
引用本文: 茅静贤, 王佳欣, 严雪冰, 王颖. 脱氧核糖核酸拓扑异构酶Ⅱβ结合蛋白1与肿瘤的研究进展[J]. 实用临床医药杂志, 2023, 27(9): 137-142. DOI: 10.7619/jcmp.20223800
MAO Jingxian, WANG Jiaxin, YAN Xuebing, WANG Ying. Research progress of deoxyribonucleic acid topoisomerase Ⅱ binding protein 1 and cancer[J]. Journal of Clinical Medicine in Practice, 2023, 27(9): 137-142. DOI: 10.7619/jcmp.20223800
Citation: MAO Jingxian, WANG Jiaxin, YAN Xuebing, WANG Ying. Research progress of deoxyribonucleic acid topoisomerase Ⅱ binding protein 1 and cancer[J]. Journal of Clinical Medicine in Practice, 2023, 27(9): 137-142. DOI: 10.7619/jcmp.20223800

脱氧核糖核酸拓扑异构酶Ⅱβ结合蛋白1与肿瘤的研究进展

基金项目: 

国家自然科学基金 81902422

江苏省卫生健康委面上项 M2020024

江苏省科协青年科技人才托举工程 TJ-2022-022

扬州市重点研发项目(社会发展) YZ2020078

扬州大学临床转化研究项目 AHYZUZHXM202104

详细信息
    通讯作者:

    王颖, E-mail: 1506134548@qq.com

  • 中图分类号: R730.2, R730.5

Research progress of deoxyribonucleic acid topoisomerase Ⅱ binding protein 1 and cancer

  • 摘要:

    脱氧核糖核酸(DNA)损伤应答(DDR)是维持内稳态及肿瘤发展重要机制之一。DNA拓扑异构酶Ⅱβ结合蛋白1(TopBP1)在维持基因组稳定性及调控DDR相关信号通路中扮演着关键角色。最新研究发现, TopBP1通过多种分子机制促进肿瘤细胞的生长、转移及耐药,并且与肿瘤发病风险及预后显著相关。本文对TopBP1在乳腺及妇科、呼吸及消化系统肿瘤中的最新研究进展进行综述,以期深入了解TopBP1在不同肿瘤中的作用机制,推动其转化为临床标志物或药物干预靶点,并为基于DDR的抗癌策略提供新思路。

    Abstract:

    Deoxyribonucleic acid (DNA) damage response (DDR) is one of crucial molecular mechanisms for homeostasis maintenance and tumor development. DNA topoisomerase Ⅱ binding protein 1 (TopBP1) plays a key role in maintaining genome stability and regulating DDR related signaling pathways. Recent studies have demonstrated TopBP1 promoted the growth, metastasis and drug resistance of cancer cells through various molecular mechanisms, and significantly correlated with cancer risk and clinical outcome. In this paper, the latest research progress of TopBP1 in breast and gynecological tumors, respiratory and digestive system tumors was reviewed, in order to further understand the mechanism of action of TopBP1 in different tumors, promote its transformation into clinical markers or drug intervention targets, and provide novel insights into the DDR based anti-cancer strategies.

  • 表  1   TopBP1在肿瘤中的生物学功能及临床意义

    肿瘤类型 表达水平 抑癌/促癌 调控因子 生物学功能 临床意义
    乳腺癌 促癌 CIP2A 增殖、调控G2-M位点
    乳腺癌 促癌 MYB 增殖、调控细胞同源重组
    乳腺癌 促癌 OTUD6A 增殖和转移 与放化疗抵抗相关
    乳腺癌 促癌 PHF8 增殖 与预后、PARP抑制剂及铂类药物敏感性相关
    乳腺癌 促癌 BRCA1/BRIP1 与PARP抑制剂敏感性相关
    乳腺癌 与乳腺癌早期诊断相关
    卵巢癌 与ATR抑制剂VE-821敏感性相关
    宫颈癌 促癌 BRD4 参与调控细胞S期及有丝分裂
    宫颈癌 促癌 病毒蛋白E2 参与HPV病毒生命周期
    宫颈癌 上调 促癌 E2F1/p73 调控HPV病毒生命周期
    肺癌 促癌 Treslin 增殖
    非小细胞肺癌 与总体生存相关
    非小细胞肺癌 突变P53 与阿霉素药物敏感性相关
    脑转移性肺癌 上调 促癌 与放射治疗效果相关
    胰腺导管腺癌 GSK-3β 与吉西他滨敏感性相关
    胰腺癌 恶性转化 判定吸烟相关胰腺癌的发病风险
    胃癌 上调 与预后相关
    胃癌 促癌 BRCC3 增殖和同源重组
    胃癌 上调 参与调控PARP1表达 与奥沙利铂耐药性相关
    胃癌 促癌 锌指蛋白860 与术后复发相关
    胃癌 Chk1 与人类表皮生长因子受体2 (Her-2)阳性胃癌的拉帕替尼治疗抵抗相关
    结直肠癌 与发病风险相关
    结直肠癌 促癌 PLD1 调控肿瘤细胞凋亡
    结直肠癌 促癌 侵袭和克隆形成
    结直肠癌 促癌 CIP2A 增殖
    前列腺癌 促癌 增殖和迁移
    神经内分泌前列腺癌 促癌 增殖
    鳞状细胞肿瘤 细胞分化
    喉癌 与淋巴结转移、病理分级及总体生存相关
    骨肉瘤 上调 促癌 与局部复发、肿瘤坏死率、阿霉素及顺铂的抵抗相关
    下载: 导出CSV
  • [1]

    CHEN M T, LINSTRA R, VAN VUGT M A T M. Genomic instability, inflammatory signaling and response to cancer immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(1): 188661. doi: 10.1016/j.bbcan.2021.188661

    [2]

    NIKFARJAM S, SINGH K K. DNA damage response signaling: a common link between cancer and cardiovascular diseases[J]. Cancer Med, 2023, 12(4): 4380-4404. doi: 10.1002/cam4.5274

    [3]

    PEREIRA C, SMOLKA M B, WEISS R S, et al. ATR signaling in mammalian meiosis: from upstream scaffolds to downstream signaling[J]. Environ Mol Mutagen, 2020, 61(7): 752-766. doi: 10.1002/em.22401

    [4]

    DAY M, OLIVER A W, PEARL L H. Phosphorylation-dependent assembly of DNA damage response systems and the central roles of TOPBP1[J]. DNA Repair (Amst), 2021, 108: 103232. doi: 10.1016/j.dnarep.2021.103232

    [5]

    ZHAO Y, HUANG X P, ZHU D, et al. Deubiquitinase OTUD6A promotes breast cancer progression by increasing TopBP1 stability and rendering tumor cells resistant to DNA-damaging therapy[J]. Cell Death Differ, 2022, 29(12): 2531-2544. doi: 10.1038/s41418-022-01036-6

    [6]

    LV Y X, HUO Y N, YU X C, et al. TopBP1 contributes to the chemoresistance in non-small cell lung cancer through upregulation of p53[J]. Drug Des Devel Ther, 2016, 10: 3053-3064. doi: 10.2147/DDDT.S90705

    [7]

    FANG Z J, GONG C J, YE Z N, et al. TOPBP1 regulates resistance of gastric cancer to oxaliplatin by promoting transcription of PARP1[J]. DNA Repair (Amst), 2022, 111: 103278. doi: 10.1016/j.dnarep.2022.103278

    [8]

    BAGGE J, OESTERGAARD V H, LISBY M. Functions of TopBP1 in preserving genome integrity during mitosis[J]. Semin Cell Dev Biol, 2021, 113: 57-64. doi: 10.1016/j.semcdb.2020.08.009

    [9]

    DE MARCO ZOMPIT M, ESTEBAN M T, MOOSER C, et al. The CIP2A-TOPBP1 complex safeguards chromosomal stability during mitosis[J]. Nat Commun, 2022, 13(1): 4143. doi: 10.1038/s41467-022-31865-5

    [10]

    LEIMBACHER P A, JONES S E, SHORROCKS A K, et al. MDC1 interacts with TOPBP1 to maintain chromosomal stability during mitosis[J]. Mol Cell, 2019, 74(3): 571-583. e8. doi: 10.1016/j.molcel.2019.02.014

    [11]

    RUIS K, HUYNH O, MONTALES K, et al. Delineation of a minimal topoisomerase Ⅱ binding protein 1 for regulated activation of ATR at DNA double-strand breaks[J]. J Biol Chem, 2022, 298(7): 101992. doi: 10.1016/j.jbc.2022.101992

    [12]

    MONTALES K, RUIS K, LINDSAY H, et al. MRN-dependent and independent pathways for recruitment of TOPBP1 to DNA double-strand breaks[J]. PLoS One, 2022, 17(8): e0271905. doi: 10.1371/journal.pone.0271905

    [13]

    MA S, CAO C, CHE S Y, et al. PHF8-promoted TOPBP1 demethylation drives ATR activation and preserves genome stability[J]. Sci Adv, 2021, 7(19): eabf7684. doi: 10.1126/sciadv.abf7684

    [14]

    KIM W, ZHAO F, GAO H Y, et al. USP13 regulates the replication stress response by deubiquitinating TopBP1[J]. DNA Repair (Amst), 2021, 100: 103063. doi: 10.1016/j.dnarep.2021.103063

    [15]

    AHMED S, ALAM W, ASCHNER M, et al. Natural products targeting the ATR-CHK1 signaling pathway in cancer therapy[J]. Biomedecine Pharmacother, 2022, 155: 113797. doi: 10.1016/j.biopha.2022.113797

    [16]

    LAINE A, NAGELLI S G, FARRINGTON C, et al. CIP2A interacts with TopBP1 and drives basal-like breast cancer tumorigenesis[J]. Cancer Res, 2021, 81(16): 4319-4331. doi: 10.1158/0008-5472.CAN-20-3651

    [17]

    YANG R M, NANAYAKKARA D, KALIMUTHO M, et al. MYB regulates the DNA damage response and components of the homology-directed repair pathway in human estrogen receptor-positive breast cancer cells[J]. Oncogene, 2019, 38(26): 5239-5249. doi: 10.1038/s41388-019-0789-3

    [18]

    MA S, ZHANG J Y, GUO Q S, et al. Disrupting PHF8-TOPBP1 connection elicits a breast tumor-specific vulnerability to chemotherapeutics[J]. Cancer Lett, 2022, 530: 29-44. doi: 10.1016/j.canlet.2022.01.010

    [19]

    HERNÁNDEZ G, RAMÍREZ M J, MINGUILLÓN J, et al. Decapping protein EDC4 regulates DNA repair and phenocopies BRCA1[J]. Nat Commun, 2018, 9(1): 967. doi: 10.1038/s41467-018-03433-3

    [20]

    REBBECK T R, MITRA N, DOMCHEK S M, et al. Modification of BRCA1-associated breast and ovarian cancer risk by BRCA1-interacting genes[J]. Cancer Res, 2011, 71(17): 5792-5805. doi: 10.1158/0008-5472.CAN-11-0773

    [21]

    BRADBURY A, ZENKE F T, CURTIN N J, et al. The role of ATR inhibitors in ovarian cancer: investigating predictive biomarkers of response[J]. Cells, 2022, 11(15): 2361. doi: 10.3390/cells11152361

    [22]

    LAM F C, KONG Y W, HUANG Q Y, et al. BRD4 prevents the accumulation of R-loops and protects against transcription-replication collision events and DNA damage[J]. Nat Commun, 2020, 11(1): 4083. doi: 10.1038/s41467-020-17503-y

    [23]

    PRABHAKAR A T, JAMES C D, DAS D, et al. CK2 phosphorylation of human papillomavirus 16 E2 on serine 23 promotes interaction with TopBP1 and is critical for E2 interaction with mitotic chromatin and the viral life cycle[J]. mBio, 2021, 12(5): e0116321. doi: 10.1128/mBio.01163-21

    [24]

    HONG S Y, XU J F, LI Y, et al. Topoisomerase Ⅱβ-binding protein 1 activates expression of E2F1 and p73 in HPV-positive cells for genome amplification upon epithelial differentiation[J]. Oncogene, 2019, 38(17): 3274-3287. doi: 10.1038/s41388-018-0633-1

    [25]

    LIU K, GRAVES J D, LEE Y J, et al. Cell cycle-dependent switch of TopBP1 functions by Cdk2 and Akt[J]. Mol Cell Biol, 2020, 40(8): e00599-e00519.

    [26]

    WANG L R, HE L J, WANG Y, et al. Correlation between BRCA1 and TopBP1 protein expression and clinical outcome of non-small cell lung cancer treated with platinum-based chemotherapy[J]. Cancer Chemother Pharmacol, 2015, 76(1): 163-170. doi: 10.1007/s00280-015-2773-0

    [27]

    LV Y X, LIU R R, XIE S Z, et al. Calcein-acetoxymethy ester enhances the antitumor effects of doxorubicin in nonsmall cell lung cancer by regulating the TopBP1/p53RR pathway[J]. Anticancer Drugs, 2017, 28(8): 861-868. doi: 10.1097/CAD.0000000000000527

    [28]

    CHOI S H, YANG H, LEE S H, et al. TopBP1 and Claspin contribute to the radioresistance of lung cancer brain metastases[J]. Mol Cancer, 2014, 13: 211. doi: 10.1186/1476-4598-13-211

    [29]

    DING L, MADAMSETTY V S, KIERS S, et al. Glycogen synthase kinase-3 inhibition sensitizes pancreatic cancer cells to chemotherapy by abrogating the TopBP1/ATR-mediated DNA damage response[J]. Clin Cancer Res, 2019, 25(21): 6452-6462. doi: 10.1158/1078-0432.CCR-19-0799

    [30]

    JANG J H, COTTERCHIO M, BORGIDA A, et al. Interaction of polymorphisms in mitotic regulator genes with cigarette smoking and pancreatic cancer risk[J]. Mol Carcinog, 2013, 52(0 1): E103-E109.

    [31]

    JIA Y X, YAN Q, ZHENG Y L, et al. Long non-coding RNA NEAT1 mediated RPRD1B stability facilitates fatty acid metabolism and lymph node metastasis via c-Jun/c-Fos/SREBP1 axis in gastric cancer[J]. J Exp Clin Cancer Res, 2022, 41(1): 287. doi: 10.1186/s13046-022-02449-4

    [32]

    LI Y, AN S L, LI X B, et al. Comprehensive analysis of epigenetic associated genes with differential gene expression and prognosis in gastric cancer[J]. Comb Chem High Throughput Screen, 2023, 26(3): 527-538. doi: 10.2174/1386207325666220514142855

    [33]

    PAN H X, BAI H S, GUO Y, et al. Bioinformatic analysis of the prognostic value of ZNF860 in recurrence-free survival and its potential regulative network in gastric cancer[J]. Eur Rev Med Pharmacol Sci, 2019, 23(1): 162-170.

    [34]

    BAI M, SONG N, CHE X F, et al. Chk1 activation attenuates sensitivity of lapatinib in HER2-positive gastric cancer[J]. Cell Biol Int, 2018, 42(7): 781-793. doi: 10.1002/cbin.10922

    [35]

    ABULÍ A, FERNÁNDEZ-ROZADILLA C, GIRÁLDEZ M D, et al. A two-phase case-control study for colorectal cancer genetic susceptibility: candidate genes from chromosomal regions 9q22 and 3q22[J]. Br J Cancer, 2011, 105(6): 870-875. doi: 10.1038/bjc.2011.296

    [36]

    KANG D W, LEE S W, HWANG W C, et al. Phospholipase D1 acts through Akt/TopBP1 and RB1 to regulate the E2F1-dependent apoptotic program in cancer cells[J]. Cancer Res, 2017, 77(1): 142-152. doi: 10.1158/0008-5472.CAN-15-3032

    [37]

    KANG D W, LEE B H, SUH Y A, et al. Phospholipase D1 inhibition linked to upregulation of ICAT blocks colorectal cancer growth hyperactivated by Wnt/β-catenin and PI3K/Akt signaling[J]. Clin Cancer Res, 2017, 23(23): 7340-7350. doi: 10.1158/1078-0432.CCR-17-0749

    [38]

    ADAM S, ROSSI S E, MOATTI N, et al. The CIP2A-TOPBP1 axis safeguards chromosome stability and is a synthetic lethal target for BRCA-mutated cancer[J]. Nat Cancer, 2021, 2(12): 1357-1371. doi: 10.1038/s43018-021-00266-w

    [39]

    LI K W, PENG S R, LI Z A, et al. Topoisomerase Ⅱ-binding protein 1 promotes the progression of prostate cancer via ATR-CHK1 signaling pathway[J]. Aging (Albany NY), 2020, 12(10): 9948-9958.

    [40]

    ZHANG W, LIU B, WU W H, et al. Targeting the MYCN-PARP-DNA damage response pathway in neuroendocrine prostate cancer[J]. Clin Cancer Res, 2018, 24(3): 696-707. doi: 10.1158/1078-0432.CCR-17-1872

    [41]

    MOLINUEVO R, FREIJE A, CONTRERAS L, et al. The DNA damage response links human squamous proliferation with differentiation[J]. J Cell Biol, 2020, 219(11): e202001063. doi: 10.1083/jcb.202001063

    [42]

    STARSKA K, FORMA E, NOWACKA-ZAWISZA M, et al. The c. *229C>T gene polymorphism in 3'UTR region of the topoisomerase Ⅱβ binding protein 1 gene and LOH in BRCA1/2 regions and their effect on the risk and progression of human laryngeal carcinoma[J]. Tumour Biol, 2016, 37(4): 4541-4557. doi: 10.1007/s13277-015-4276-3

    [43]

    WU D P, YAN X B, LIU L G, et al. TopBP1 promotes malignant progression and correlates with poor prognosis in osteosarcoma[J]. Eur Rev Med Pharmacol Sci, 2017, 21(18): 4022-4031.

  • 期刊类型引用(16)

    1. 郭兴,刘宝. 左西孟旦联合双联抗血小板对急性心肌梗死介入后心力衰竭患者心肌损伤及血清Periostin、sST2水平的影响. 医药论坛杂志. 2024(04): 419-423 . 百度学术
    2. 吴晶晶,赵妍妍,王燕,陈蝶,胡杨,秦闻. 基于心力衰竭超声指数及血清学指标构建急性失代偿性心力衰竭患者短期主要不良心血管事件发生风险的预测模型. 心脑血管病防治. 2024(01): 4-8 . 百度学术
    3. 郭双,苏丽萍,胡丽君. 血清VS-2、CTRP9水平对急性心肌梗死患者PCI术后心力衰竭的预测价值. 热带医学杂志. 2024(06): 872-875+883+916 . 百度学术
    4. 安然,韩建妙,张倩,朱娜娜,闫士然. 血尿酸、肠道菌群、miR-25水平与老年慢性心力衰竭患者心功能的相关性及对诊断的价值. 疑难病杂志. 2024(10): 1198-1202 . 百度学术
    5. 杨漫,刘连庚,姚林,冒小红. 心衰患者不同心功能分级与血尿酸水平的相关性. 智慧健康. 2024(26): 32-34 . 百度学术
    6. 权党军,张明卜,赵向利. 米力农联合rhBNP治疗慢性心力衰竭的疗效及其对患者心、肺功能的影响. 医学临床研究. 2024(05): 736-738+742 . 百度学术
    7. 冯玲华. 不同剂量呋塞米注射液对慢性心力衰竭患者 NT-proBNP、VS-2水平的影响. 医学理论与实践. 2023(07): 1124-1126 . 百度学术
    8. 张海洋,冯静茹,李凡,王静,赵娜,毕胜利,李新军. 绝经后慢性心力衰竭患者内源性性激素水平与左心室射血分数的相关性研究. 中国医药导报. 2023(13): 96-99 . 百度学术
    9. 孙利敏,张培勇,杨冰冰. 高血压合并HHCY伴HFPEF患者的血清因子与NYHA分级的相关性分析. 江西医药. 2022(06): 631-633+636 . 百度学术
    10. 王颂,王辉,郭清晓. 不同NYHA分级慢性心力衰竭患者血清SIRT1、VS-2水平变化及其与疾病转归的关系. 河南医学研究. 2022(17): 3143-3146 . 百度学术
    11. 王静,亓民,常珍珍,乔俭,张卓,卜巧云,费睿成,丁珊珊. Fibrosis-4指数、NFS联合血清DBIL、尿酸对老年CHF患者全因死亡风险的评价研究. 中国卫生工程学. 2022(04): 630-633+638 . 百度学术
    12. 陈建南,吴进盛,于莉,余华军. 冻干重组人脑利钠肽联合参脉注射液对慢性肺源性心脏合并心力衰竭患者的临床疗效. 临床和实验医学杂志. 2022(17): 1825-1829 . 百度学术
    13. 万超. CHF患者血清UA、D-D、和肽素、HGF与NYHA心功能分级和心血管事件的关系. 中国卫生工程学. 2022(05): 799-802 . 百度学术
    14. 黎叶飞,钱烨晟,郑扣龙,盛臻强,卢辉和. 窦性心率震荡与射血分数保留的心力衰竭患者预后的相关性研究. 实用临床医药杂志. 2022(24): 107-111 . 本站查看
    15. 郜旌宏,秦小飞. 沙库巴曲缬沙坦钠辅助治疗在慢性心力衰竭患者中的应用价值. 医药论坛杂志. 2021(09): 123-126 . 百度学术
    16. 刘兴超. 急性失代偿期心力衰竭患者不良心血管事件发生的影响因素. 河南医学研究. 2021(34): 6450-6453 . 百度学术

    其他类型引用(2)

表(1)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  88
  • PDF下载量:  28
  • 被引次数: 18
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-03-05
  • 网络出版日期:  2023-05-24
  • 刊出日期:  2023-05-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭