Research progress on roles of bile acids and its receptors in pathogenesis of non-alcoholic fatty liver disease and pharmacological treatment
-
摘要:
非酒精性脂肪性肝病(NAFLD)是以肝细胞内脂质蓄积为主要特征的肝脏代谢紊乱疾病,已成为全球范围内慢性肝病的主要病因。20%~30%的NAFLD会进展为非酒精性脂肪性肝炎(NASH), NASH的发展与多种代谢紊乱密切相关。胆汁酸及其受体功能在NASH的发病机制中起着重要作用,胆汁酸受体是治疗NASH重要的靶点。本文对胆汁酸及其受体在NAFLD和NASH发展中的作用,特别是关于法尼醇X受体(FXR)在不同组织(包括肝脏和肠道)中的功能的研究予以综述,介绍基于胆汁酸及其受体的NASH治疗药物的研究进展。
Abstract:Non-alcoholic fatty liver disease (NAFLD) is a liver metabolic disorder characterized by lipid accumulation in liver cells, and it has become the main cause of chronic liver disease worldwide. 20% to 30% of patients with NAFLD were able to progress to non-alcoholic steatohepatitis (NASH), and the development of NASH is closely related to various metabolic disorders. Bile acids and its receptor function play important roles in the pathogenesis of NASH, and bile acid receptors are the important targets for the treatment of NASH. This article reviewed the roles of bile acids and their receptors in the development of NAFLD and NASH, especially the functional research of farnesol X receptors (FXR) in different tissues (including liver and intestine), and introduced the research progress of NASH therapeutic drugs based on bile acids and their receptors.
-
胫骨骨折是比较常见的骨折类型,约占四肢骨折的3.77%, 占全身骨折的9.45%[1]。由于胫骨解剖位置的特殊性,外力高能量冲击如交通意外、高处坠落、摔倒等容易造成应力集中,导致血运破坏和软组织损伤,若处理不当,不仅骨折愈合困难,而且易发生感染、畸形愈合等并发症。A型闭合性胫骨远端骨折是胫骨骨折的常见类型,根据胫骨干骺端的粉碎程度可分为A1、A2和A3 3个亚型。经皮微创钢板内固定术(MIPPO)是目前治疗此类骨折的主要术式,为骨折愈合提供生物学环境,临床应用广泛[2],但受软组织条件较差和血运破坏等影响,患者术后并发症仍难以避免,引起临床思考最佳钢板放置的位置(胫骨内侧或外侧)[3], 但目前并未形成统一定论,相关研究报道也较少。本研究对88例A型闭合性胫骨远端骨折开展前瞻性随机分组对照试验,探讨内侧和外侧MIPPO的短期手术疗效,为临床术式选择提供参考,现报告如下。
1. 资料与方法
1.1 一般资料
纳入本院2016年2月—2019年6月收治的88例A型闭合性胫骨远端骨折患者,纳入标准: 经X线、CT等影像学检查,并参考AO分型标准确诊为A型闭合性胫骨远端骨折,未见其他骨折部位; 患者年龄18~65岁,精神意识正常,配合研究并愿意接受随访,签署研究知情同意书。排除标准: 病理性骨折、代谢性或内分泌性骨病、严重外伤或骨质疏松; 合并肝、肾功能不全,免疫系统缺陷,严重心脑血管疾病,糖尿病足或恶性肿瘤者; 哺乳期妊娠期妇女; 入院前接受过相关治疗者。采用简单随机分组法分为内侧固定组和外侧固定组,各44例。内侧固定组男29例,女15例; 年龄21~63岁,平均(41.25±10.34)岁; AO分型: A1型(单纯型)20例, A2型(粉碎型)13例, A3型(严重粉碎型)11例; 骨折发生原因: 交通意外伤17例,运动意外伤14例,砸伤8例,坠落伤5例; 骨折发生至接受手术时间2~11 d, 平均(3.59±1.02) d; 合并腓骨骨折19例。外侧固定组男31例,女13例; 年龄21~63岁,平均年龄(39.25±10.34)岁; AO分型: A1型19例, A2型15例, A3型(严重粉碎型)10例; 骨折发生至接受手术时间1~12 d, 平均(3.61±1.03) d; 合并腓骨骨折17例。2组胫骨远端骨折患者上述资料分布均衡,组间比较差异无统计学意义(P>0.05)。本研究获得医院伦理学委员会批准。
1.2 方法
所有患者入院后均接受抗炎消肿等对症治疗,待骨折处皮肤出现褶皱后行MIPPO技术联合LCP内固定术治疗,手术均由本院骨伤科具有3年以上经验的外科医师操作,围术期护理均相同。术前常规持续硬膜外麻醉,取仰卧位,合并腓骨骨折者先行复位和腓骨远端解剖钢板内固定处理,恢复患肢长度。
内侧固定组:自内踝尖下0.5 cm处行长度约3 cm的弧形切口,骨膜剥离器沿胫骨方向推开软组织,在骨膜和皮下组织间建立软组织隧道,选择合适型号的钢板沿隧道插入,钢板远端位于内踝尖近端约1 cm处,由远端至近端置入螺钉。在C型臂X线机透视下对骨折端进行手法复位,复位完毕后,将钢板剩余各孔进行体表定位,采用锁定螺钉固定远近端钉孔,固定完毕后透视下观察骨折端对位、螺钉长度等是否满意,内固定后常规冲洗缝合切口,放置引流管。
外侧固定组:于踝关节面胫骨嵴外侧旁约1 cm处做长度4~5 cm纵向切口,分离软组织,钝性分离胫骨前肌外侧缘至骨面,向外侧缘紧贴骨面进行剥离,建立软组织隧道,由远端至近端插入合适型号钢板,近端显露钉孔,在C型臂X线机透视下对钢板剩余孔钉行螺钉固定,然后冲洗缝合切口,术后处理同内侧固定组。2组患者术后均抬高患肢,术后使用抗生素预防感染并止痛消肿治疗,在医师指导下接受循序渐进的康复锻炼治疗,术后均通过门诊复查形式随访至少6个月。
1.3 观察指标
统计2组患者手术时间、手术出血量、术后1 d视觉模拟评分法(VAS)评分、骨折愈合时间等,其中VAS评分为患者自评,总分0~10分,根据主观疼痛感受进行赋值评分,评分越高表示疼痛越明显,反之愈轻。骨折愈合标准: ①患肢可完全负重,无局部疼痛; ② X线检查提示有连续骨痂线通过骨折断端,同时满足①、②表示骨折愈合。术后末次随访行踝-后足功能AOFAS评分, AOFAS评分总分100分, 75分为合格,得分越高表示踝-后足功能恢复越好。2组术后随访期间记录手术并发症情况。
1.4 统计学分析
采用SPSS 20.0软件分析数据,计数资料采用[n(%)]表示,组间比较行χ2检验; 计量资料满足正态分布和方差齐性采用(x±s)表示,组间比较行独立t检验,同组不同时点数据比较行配对t检验。P < 0.05为差异有统计学意义。
2. 结果
2.1 2组临床手术指标比较
内侧固定组手术时间、手术出血量和骨折愈合时间均优于外侧固定组,差异有统计学意义(P < 0.05), 2组术后1 d VAS评分比较,差异无统计学意义(P>0.05), 见表 1。
表 1 2组患者临床手术指标比较(x±s)指标 内侧固定组
(n=44)外侧固定组
(n=44)手术时间/min 64.28±8.57* 85.16±10.93 手术出血量/mL 54.02±10.42* 82.18±15.07 术后1 d VAS评分/分 3.21±0.65 3.36±0.81 骨折愈合时间/月 5.01±0.94* 5.48±1.13 VAS: 视觉模拟评分法。与外侧固定组比较, *P < 0.05。 2.2 2组术后随访并发症及末次随访AOFAS评分比较
2组术后均成功随访≥6个月,内侧固定组随访6~10个月,平均8.35个月。外侧固定组随访6~9个月,平均8.29个月。术后并发症有切口感染、钢板弯曲、延迟愈合和踝关节疼痛,均无钢板断裂和畸形愈合发生。切口感染者经3~4次换药和抗感染治疗后愈合。钢板弯曲和骨折延迟愈合者嘱咐患肢不负重,石膏固定后逐渐愈合。踝关节疼痛者摘除钢板后疼痛缓解。2组切口感染、钢板弯曲、延迟愈合、踝关节疼痛及总并发症发生率比较,差异均无统计学意义(P>0.05), 末次随访AOFAS评分比较差异亦无统计学意义(P>0.05), 见表 2。
表 2 2组患者随访并发症和AOFAS评分比较(x±s)[n(%)]组别 n 并发症 AOFAS评分/分 切口感染 钢板弯曲 延迟愈合 踝关节疼痛 合计 内侧固定组 44 3(6.82) 0 1(2.27) 2(4.55) 6(13.64) 86.24±7.35 外侧固定组 44 2(4.55) 1(2.27) 2(4.55) 3(6.82) 8(18.18) 85.38±7.51 3. 讨论
MIPPO是目前治疗胫骨远端骨折的有效术式,优点在于可避免暴露骨折部位,保留骨折部位血运,促进骨折愈合,同时减少并发症[4]。董磊等[5-6]报道, MIPPO技术能最大程度保护软组织和骨皮质,促进骨折愈合。临床经验表明,内侧或外侧MIPPO均具有显著疗效,患者术后骨折愈合率高,足部疼痛和前后足活动功能均有明显改善,但不同固定方法MIPPO的手术效果比较尚需大量研究论证。朱兴建等[7]报道指出, LCP应用MIPPO技术治疗胫骨远端骨折,与内侧入路比较,外侧入路术并发症率更低,手术时间、出血量和畸形愈合率也明显减少。但石伟哲等[8]报道显示,内侧或外侧MIPPO治疗A型闭合性胫骨远端骨折的短期疗效并无显著差异。
本研究显示, 2组患者术后1 d VAS评分比较无显著差异,但内侧固定组在手术时间、手术出血量和骨折愈合时间方面更具优势(P < 0.05), 与文献报道[10]相似,说明内侧固定能显著缩短MIPPO手术时间和骨折愈合时间,减少手术出血量。分析原因认为,胫骨远端钢板外侧固定虽然能改善软组织覆盖条件,减少软组织并发症发生,但此固定方法对软组织的剥离程度较严重,而且术中需要严格保护腓深神经和胫骨前动脉,造成手术时间延长和出血量增多,增加患者手术生理痛苦[11]。相比而言,胫骨内侧放置钢板操作更加简单,缩短了手术时间,减少出血量,缓解患者手术不适感,而且胫骨内侧固定更符合“生物学固定”原则,钢板与肌群张力相互平衡,营造理想的生物力学生理环境。有研究[12-13]指出,置入胫骨外侧的钢板易受外侧、后侧的肌肉牵拉作用,骨折部向内侧成角,造成愈合延迟和踝关节疼痛,严重时发生钢板断裂和畸形愈合。此外,相对外侧固定,内侧固定对局部血运的破坏较小,钢板置于胫骨内侧能有效保护外侧骨膜血管系统,促进骨折愈合和术后功能恢复[14]。本研究随访显示, 2组术后均无钢板断裂和畸形愈合等严重并发症发生,组间切口感染、钢板弯曲、延迟愈合和踝关节疼痛发生率比较无显著差异(P>0.05), 且末次随访踝-足功能均恢复良好, AOFAS评分比较无显著差异,提示MIPPO术中采用2种固定方法的短期疗效和并发症率接近[15]。
本研究也存在研究准备仓促、纳入样本量偏少、随访期偏短以及缺乏影像学测量数据等不足。此外, MIPPO手术疗效还受软组织损伤程度、术后康复锻炼情况等因素影响,对本研究结论可能造成一定偏倚,在后续研究中需进一步完善。总之,内侧或外侧MIPPO治疗A型闭合性胫骨远端骨折均安全有效,但胫骨内侧放置钢板固定手术操作简单,可节约手术时间,减少出血量,缩短骨折愈合时间,促进患者术后尽快康复,而且更符合骨折愈合的生物力学环境,建议临床优先选择内侧固定方法。
-
[1] PAIK J M, GOLABI P, YOUNOSSI Y, et al. Changes in the global burden of chronic liver diseases from 2012 to 2017: the growing impact of NAFLD[J]. Hepatology, 2020, 72(5): 1605-1616. doi: 10.1002/hep.31173
[2] YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. doi: 10.1002/hep.30251
[3] GEIER A, TINIAKOS D, DENK H, et al. From the origin of NASH to the future of metabolic fatty liver disease[J]. Gut, 2021, 70(8): 1570-1579. doi: 10.1136/gutjnl-2020-323202
[4] FIORUCCI S, BIAGIOLI M, SEPE V, et al. Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH)[J]. Expert Opin Investig Drugs, 2020, 29(6): 623-632. doi: 10.1080/13543784.2020.1763302
[5] RAU M, GEIER A. An update on drug development for the treatment of nonalcoholic fatty liver disease-from ongoing clinical trials to future therapy[J]. Expert Rev Clin Pharmacol, 2021, 14(3): 333-340. doi: 10.1080/17512433.2021.1884068
[6] RIDLON J M, HARRIS S C, BHOWMIK S, et al. Consequences of bile salt biotransformations by intestinal bacteria[J]. Gut Microbes, 2016, 7(1): 22-39. doi: 10.1080/19490976.2015.1127483
[7] HONDA A, MIYAZAKI T, IWAMOTO J, et al. Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition[J]. J Lipid Res, 2020, 61(1): 54-69. doi: 10.1194/jlr.RA119000395
[8] CHÁVEZ-TALAVERA O, TAILLEUX A, LEFEBVRE P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(7): 1679-1694. e3. doi: 10.1053/j.gastro.2017.01.055
[9] DIEHL A M, DAY C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis[J]. N Engl J Med, 2017, 377(21): 2063-2072. doi: 10.1056/NEJMra1503519
[10] NIMER N, CHOUCAIR I, WANG Z N, et al. Bile acids profile, histopathological indices and genetic variants for non-alcoholic fatty liver disease progression[J]. Metabolism, 2021, 116: 154457. doi: 10.1016/j.metabol.2020.154457
[11] FERSLEW B C, XIE G X, JOHNSTON C K, et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis[J]. Dig Dis Sci, 2015, 60(11): 3318-3328. doi: 10.1007/s10620-015-3776-8
[12] XIE G X, JIANG R Q, WANG X N, et al. Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis[J]. EBioMedicine, 2021, 66: 103290. doi: 10.1016/j.ebiom.2021.103290
[13] CAUSSY C, HSU C, SINGH S, et al. Serum bile acid patterns are associated with the presence of NAFLD in twins, and dose-dependent changes with increase in fibrosis stage in patients with biopsy-proven NAFLD[J]. Aliment Pharmacol Ther, 2019, 49(2): 183-193. doi: 10.1111/apt.15035
[14] GRZYCH G, CHÁVEZ-TALAVERA O, DESCAT A, et al. NASH-related increases in plasma bile acid levels depend on insulin resistance[J]. JHEP Rep, 2021, 3(2): 100222. doi: 10.1016/j.jhepr.2020.100222
[15] LEW J L, ZHAO A N, YU J H, et al. The farnesoid X receptor controls gene expression in a ligand- and promoter-selective fashion[J]. J Biol Chem, 2004, 279(10): 8856-8861. doi: 10.1074/jbc.M306422200
[16] HUANG F J, ZHENG X J, MA X H, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nat Commun, 2019, 10(1): 4971. doi: 10.1038/s41467-019-12896-x
[17] JIAO N, BAKER S S, CHAPA-RODRIGUEZ A, et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD[J]. Gut, 2018, 67(10): 1881-1891. doi: 10.1136/gutjnl-2017-314307
[18] VENETSANAKI V, KARABOUTA Z, POLYZOS S A. Farnesoid X nuclear receptor agonists for the treatment of nonalcoholic steatohepatitis[J]. Eur J Pharmacol, 2019, 863: 172661. doi: 10.1016/j.ejphar.2019.172661
[19] DENG W Y, FAN W J, TANG T T, et al. Farnesoid X receptor deficiency induces hepatic lipid and glucose metabolism disorder via regulation of pyruvate dehydrogenase kinase 4[J]. Oxid Med Cell Longev, 2022, 2022: 3589525.
[20] SEOK S, SUN H, KIM Y C, et al. Defective FXR-SHP regulation in obesity aberrantly increases miR-802 expression, promoting insulin resistance and fatty liver[J]. Diabetes, 2021, 70(3): 733-744. doi: 10.2337/db20-0856
[21] SCHUMACHER J D, GUO G L. Pharmacologic modulation of bile acid-FXR-FGF15/FGF19 pathway for the treatment of nonalcoholic steatohepatitis[M]. Bile Acids and Their Receptors. Cham: Springer International Publishing, 2019: 325-357.
[22] KIM D H, XIAO Z, KWON S, et al. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity[J]. EMBO J, 2015, 34(2): 184-199. doi: 10.15252/embj.201489527
[23] VERBEKE L, MANNAERTS I, SCHIERWAGEN R, et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis[J]. Sci Rep, 2016, 6: 33453. doi: 10.1038/srep33453
[24] GAI Z B, VISENTIN M, GUI T, et al. Effects of farnesoid X receptor activation on arachidonic acid metabolism, NF-κB signaling, and hepatic inflammation[J]. Mol Pharmacol, 2018, 94(2): 802-811. doi: 10.1124/mol.117.111047
[25] HAO H P, CAO L J, JIANG C T, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated Sepsis[J]. Cell Metab, 2017, 25(4): 856-867. doi: 10.1016/j.cmet.2017.03.007
[26] ADRIANA C. Disruption of TFGβ-SMAD3 pathway by the nuclear receptor SHP mediates the antifibrotic activities of BAR704, a novel highly selective FXR ligand[J]. Pharmacol Res, 2018, 131: 17-31. doi: 10.1016/j.phrs.2018.02.033
[27] TSUCHIDA T, FRIEDMAN S L. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. doi: 10.1038/nrgastro.2017.38
[28] WANG H, GE C L, ZHOU J Y, et al. Noncanonical farnesoid X receptor signaling inhibits apoptosis and impedes liver fibrosis[J]. EBioMedicine, 2018, 37: 322-333. doi: 10.1016/j.ebiom.2018.10.028
[29] GAI Z B, GUI T, ALECU I, et al. Farnesoid X receptor activation induces the degradation of hepatotoxic 1-deoxysphingolipids in non-alcoholic fatty liver disease[J]. Liver Int, 2020, 40(4): 844-859. doi: 10.1111/liv.14340
[30] NISSAR A U, SHARMA L, MUDASIR M A, et al. Chemical chaperone 4-phenyl butyric acid (4-PBA) reduces hepatocellular lipid accumulation and lipotoxicity through induction of autophagy[J]. J Lipid Res, 2017, 58(9): 1855-1868. doi: 10.1194/jlr.M077537
[31] WU K, ZHAO T, HOGSTRAND C, et al. FXR-mediated inhibition of autophagy contributes to FA-induced TG accumulation and accordingly reduces FA-induced lipotoxicity[J]. Cell Commun Signal, 2020, 18(1): 47. doi: 10.1186/s12964-020-0525-1
[32] SEOK S, FU T, CHOI S E, et al. Transcriptional regulation of autophagy by an FXR-CREB axis[J]. Nature, 2014, 516(7529): 108-111. doi: 10.1038/nature13949
[33] LEE J M, WAGNER M, XIAO R, et al. Nutrient-sensing nuclear receptors coordinate autophagy[J]. Nature, 2014, 516(7529): 112-115. doi: 10.1038/nature13961
[34] MONTAIGNE D, BUTRUILLE L, STAELS B. PPAR control of metabolism and cardiovascular functions[J]. Nat Rev Cardiol, 2021, 18(12): 809-823. doi: 10.1038/s41569-021-00569-6
[35] BROCKER C N, KIM D, MELIA, et al. Long non-coding RNA Gm15441 attenuates hepatic inflammasome activation in response to PPARA agonism and fasting[J]. Nat Commun, 2020, 11(1): 5847. doi: 10.1038/s41467-020-19554-7
[36] STEC D E, GORDON D M, HIPP J A, et al. Loss of hepatic PPARα promotes inflammation and serum hyperlipidemia in diet-induced obesity[J]. Am J Physiol Regul Integr Comp Physiol, 2019, 317(5): R733-R745. doi: 10.1152/ajpregu.00153.2019
[37] YU D D, VAN CITTERS G, LI H Z, et al. Discovery of novel modulators for the PPARα (peroxisome proliferator activated receptor α): potential therapies for nonalcoholic fatty liver disease[J]. Bioorg Med Chem, 2021, 41: 116193. doi: 10.1016/j.bmc.2021.116193
[38] SASAKI Y, ASAHIYAMA M, TANAKA T, et al. Pemafibrate, a selective PPARα modulator, prevents non-alcoholic steatohepatitis development without reducing the hepatic triglyceride content[J]. Sci Rep, 2020, 10(1): 7818. doi: 10.1038/s41598-020-64902-8
[39] ZHANG Z H, CHEN F F, LI J H, et al. 1, 25(OH)2D3 suppresses proinflammatory responses by inhibiting Th1 cell differentiation and cytokine production through the JAK/STAT pathway[J]. Am J Transl Res, 2018, 10(8): 2737-2746.
[40] ZHANG H, SHEN Z, LIN Y M, et al. Vitamin D receptor targets hepatocyte nuclear factor 4α and mediates protective effects of vitamin D in nonalcoholic fatty liver disease[J]. J Biol Chem, 2020, 295(12): 3891-3905. doi: 10.1074/jbc.RA119.011487
[41] BOZIC M, GUZMÁN C, BENET M, et al. Hepatocyte vitamin D receptor regulates lipid metabolism and mediates experimental diet-induced steatosis[J]. J Hepatol, 2016, 65(4): 748-757. doi: 10.1016/j.jhep.2016.05.031
[42] CAO Y, SHU X B, YAO Z M, et al. Is vitamin D receptor a druggable target for non-alcoholic steatohepatitis?[J]. World J Gastroenterol, 2020, 26(38): 5812-5821. doi: 10.3748/wjg.v26.i38.5812
[43] SHI Y, SU W T, ZHANG L, et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation[J]. Front Immunol, 2020, 11: 609060.
[44] BIDAULT-JOURDAINNE V, MERLEN G, GLÉNISSON M, et al. TGR5 controls bile acid composition and gallbladder function to protect the liver from bile acid overload[J]. JHEP Rep, 2021, 3(2): 100214. doi: 10.1016/j.jhepr.2020.100214
[45] FERRELL J M, PATHAK P, BOEHME S, et al. Deficiency of both farnesoid X receptor and takeda G protein-coupled receptor 5 exacerbated liver fibrosis in mice[J]. Hepatology, 2019, 70(3): 955-970. doi: 10.1002/hep.30513
[46] XIE G X, JIANG R Q, WANG X N, et al. Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis[J]. EBioMedicine, 2021, 66: 103290. doi: 10.1016/j.ebiom.2021.103290
[47] NEUSCHWANDER-TETRI B A, LOOMBA R, SANYAL A J, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial[J]. Lancet, 2015, 385(9972): 956-965. doi: 10.1016/S0140-6736(14)61933-4
[48] RATZIU V, SANYAL A J, LOOMBA R, et al. REGENERATE: Design of a pivotal, randomised, phase 3 study evaluating the safety and efficacy of obeticholic acid in patients with fibrosis due to nonalcoholic steatohepatitis[J]. Contemp Clin Trials, 2019, 84: 105803. doi: 10.1016/j.cct.2019.06.017
[49] YOUNOSSI Z M, RATZIU V, LOOMBA R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial[J]. Lancet, 2019, 394(10215): 2184-2196. doi: 10.1016/S0140-6736(19)33041-7
[50] LI J X, LIU C H, ZHOU Z Y, et al. Isotschimgine alleviates nonalcoholic steatohepatitis and fibrosis via FXR agonism in mice[J]. Phytother Res, 2021, 35(6): 3351-3364. doi: 10.1002/ptr.7055
[51] PATEL K, HARRISON S A, ELKHASHAB M, et al. Cilofexor, a nonsteroidal FXR agonist, in patients with noncirrhotic NASH: a phase 2 randomized controlled trial[J]. Hepatology, 2020, 72(1): 58-71. doi: 10.1002/hep.31205
[52] GONZALEZ F J, JIANG C T, XIE C, et al. Intestinal farnesoid X receptor signaling modulates metabolic disease[J]. Dig Dis, 2017, 35(3): 178-184. doi: 10.1159/000450908
[53] SUN L L, XIE C, WANG G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin[J]. Nat Med, 2018, 24(12): 1919-1929. doi: 10.1038/s41591-018-0222-4
[54] YANG F, HUANG X F, YI T S, et al. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor[J]. Cancer Res, 2007, 67(3): 863-867. doi: 10.1158/0008-5472.CAN-06-1078
[55] HU Y B, LIU X Y, ZHAN W. Farnesoid X receptor agonist INT-767 attenuates liver steatosis and inflammation in rat model of nonalcoholic steatohepatitis[J]. Drug Des Dev Ther, 2018, 12: 2213-2221. doi: 10.2147/DDDT.S170518
[56] WANG X X, XIE C, LIBBY A E, et al. The role of FXR and TGR5 in reversing and preventing progression of Western diet-induced hepatic steatosis, inflammation, and fibrosis in mice[J]. J Biol Chem, 2022, 298(11): 102530. doi: 10.1016/j.jbc.2022.102530
[57] HARRISON S A, ROSSI S J, PAREDES A H, et al. NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis[J]. Hepatology, 2020, 71(4): 1198-1212. doi: 10.1002/hep.30590
[58] HARRISON S A, NEFF G, GUY C D, et al. Efficacy and safety of aldafermin, an engineered FGF19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis[J]. Gastroenterology, 2021, 160(1): 219-231. doi: 10.1053/j.gastro.2020.08.004
[59] LI Q, LI M, LI F H, et al. Qiang-Gan formula extract improves non-alcoholic steatohepatitis via regulating bile acid metabolism and gut microbiota in mice[J]. J Ethnopharmacol, 2020, 258: 112896. doi: 10.1016/j.jep.2020.112896
[60] HUANG P, YANG L L, LIU Y, et al. Lanzhang Granules ameliorate nonalcoholic fatty liver disease by regulating the PPARα signaling pathway[J]. Evid Based Complement Alternat Med, 2022, 2022: 1124901.
[61] HUANG Y J, LANG H D, CHEN K, et al. Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARα pathway[J]. Physiol Appliquee Nutr Metab, 2020, 45(3): 227-239. doi: 10.1139/apnm-2019-0057
[62] DU T Y, FANG Q, ZHANG Z H, et al. Lentinan protects against nonalcoholic fatty liver disease by reducing oxidative stress and apoptosis via the PPARα pathway[J]. Metabolites, 2022, 12(1): 55. doi: 10.3390/metabo12010055
[63] CUI S, PAN X J, GE C L, et al. Silybin alleviates hepatic lipid accumulation in methionine-choline deficient diet-induced nonalcoholic fatty liver disease in mice via peroxisome proliferator-activated receptor Α[J]. Chin J Nat Med, 2021, 19(6): 401-411.
-
期刊类型引用(9)
1. 张丹. 闭合性胫骨远端关节外骨折的内固定术联合抗凝药物对患者患肢功能影响. 江西医药. 2023(06): 690-692+703 . 百度学术
2. 王禹,李东光,王洪淼,刘剑,邢武军. 锁定加压钢板结合MIPPO技术治疗胫骨远端骨折的优良率及对愈合时间、负重时间、bFGF、BMP-2水平的影响. 中国医学创新. 2022(09): 139-144 . 百度学术
3. 林先禄. 切开复位内固定、MIPPO技术结合LCP钢板内固定治疗胫骨远端闭合性骨折的临床研究. 实用中西医结合临床. 2022(16): 103-106 . 百度学术
4. 景晨光,杨虎. MIPPO技术结合锁定加压钢板对A型闭合性胫骨远端骨折患者踝关节功能及活动范围的影响. 临床医学研究与实践. 2021(02): 81-83 . 百度学术
5. 陈松涛. MIPPO技术结合锁定加压钢板治疗胫骨远端骨折临床疗效分析. 微量元素与健康研究. 2021(02): 78-80 . 百度学术
6. 李涛. 两种内固定对AO分型43-A型胫骨骨折的治疗效果评价. 中国卫生标准管理. 2021(17): 52-55 . 百度学术
7. 郑义海,向明,汪爱兰,江有华,袁梦龙. 无X线透视下微创切口+内侧经皮锁定钢板治疗胫骨下段螺旋型骨折的临床效果. 医学信息. 2021(23): 69-72 . 百度学术
8. 万春根,殷伟根,奚伟伟. 外侧锁定加压钢板治疗闭合性胫骨下端骨折的效果. 医学信息. 2020(08): 133-134 . 百度学术
9. 高世龙. 经皮微创锁定加压钢板内固定术治疗胫骨远端骨折患者的有效性及安全性分析. 当代医学. 2020(20): 52-55 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 268
- HTML全文浏览量: 75
- PDF下载量: 38
- 被引次数: 10