A Meta-analysis of surgical treatment for paraclinoid aneurysms
-
摘要:目的
采用系统回顾及荟萃分析的方法对已发表的床突旁动脉瘤手术夹闭和血管内栓塞治疗的系列文献进行分析。
方法采用计算机检索PubMed和Web of Science电子数据库,获取1980年1月—2022年12月床突旁动脉瘤手术夹闭和血管内栓塞治疗的文献。分析文献中完全闭塞率、症状改善率和相关并发症发生率的差异。
结果本研究系统回顾了37篇共2 698例患者的临床资料,其中1 164例患者接受了血管内栓塞治疗(血管内栓塞组), 1 534例患者进行了手术夹闭(手术夹闭组)。血管内栓塞组的完全闭塞率低于手术夹闭组,差异有统计学意义(OR=0.53, 95%CI: 0.37~0.77, P=0.001, I2=0%)。手术夹闭组的症状改善率优于血管内栓塞组,差异有统计学意义(OR=0.26, 95%CI: 0.14~0.50, P < 0.001, I2=5.9%)。2组并发症发生率差异无统计学意义(OR=0.25, 95%CI: 0.03~2.20, P=0.21, I2=7.43%)。
结论与血管内栓塞相比,手术夹闭治疗可增高完全闭塞率,改善症状似乎更有利,但术中及术后并发症发生率也相应增高。
Abstract:ObjectiveTo analyze a series of published literatures on surgical clipping and endovascular embolization treatment for paraclinoid aneurysms by systematic review and the Meta-analysis.
MethodsThe computer was used to search electronic databases such as PubMed and Web of Science to obtain literatures on surgical clipping and endovascular treatment for paraclinoid aneurysms from January 1980 to December 2022. The differences in the rate of complete occlusion, the improvement rate of symptoms, and the incidence rate of related complications in literatures were analyzed.
ResultsThis study systematically reviewed the clinical materials of 2 698 patients from 37 studies, of which 1, 164 patients(endovascular embolization group)received endovascular embolization treatment, and 1, 534 patients(surgical clipping group) underwent surgical clipping. The complete occlusion rate of endovascular embolization group was significantly lower than that of surgical clipping group (OR=0.53; 95%CI, 0.37 to 0.77; P=0.001; I2=0%). The improvement rate of symptoms in the surgical clipping group was significantly better than that in the endovascular embolization group (OR=0.26; 95%CI, 0.14 to 0.50; P < 0.001; I2=5.9%). There was no significant difference in the incidence of complications between the two groups (OR=0.25; 95%CI, 0.03 to 2.20; P=0.21; I2=7.43%).
ConclusionCompared with endovascular embolization, surgical clipping treatment can increase the complete occlusion rate, which seems more beneficial for improving symptoms, but the incidence of intraoperative and postoperative complications increases.
-
阻塞性睡眠呼吸暂停低通气综合征(OSAHS)是一种以睡眠期间上呼吸道反复阻塞而导致气流中断或减少为特征的临床综合征,患者可表现为夜间打鼾、白天嗜睡、情绪障碍等,与心脑血管疾病、内分泌与代谢性疾病及神经认知功能障碍等密切相关[1]。近年来,随着OSAHS研究的不断深入, OSAHS伴发的2型糖尿病逐渐引起关注。OSAHS已被证实是2型糖尿病的独立危险因素之一,且在2型糖尿病的发展中发挥重要作用[2]。相关研究[3]表明, OSAHS患者的2型糖尿病患病率为15%~30%, 且重度OSAHS患者的患病率可能更高。反复呼吸阻塞或暂停引起的间歇性缺氧(IH)是低通气的特征性病理改变,最终导致OSAHS患者以低氧血症、高碳酸血症为主的病理生理基础[4]。研究[2]证实, IH通过多种机制参与2型糖尿病的发病过程。夜间脉搏血氧饱和度(SpO2)监测可反映睡眠期间血氧状态,已被应用于OSAHS和2型糖尿病等多种疾病的研究中,但关于OSAHS患者SpO2与发生2型糖尿病关系的研究目前尚少见。本研究探讨了OSAHS患者夜间SpO2水平与2型糖尿病之间的关系,并分析SpO2对OSAHS患者伴发2型糖尿病的预测价值,现报告如下。
1. 资料与方法
1.1 一般资料
选取2021年1—9月因打鼾至扬州大学附属医院门诊或住院申请行多导睡眠图仪(PSG)监测的患者作为研究对象。结合患者病史、体格检查及相关实验室检查结果,根据《阻塞性睡眠呼吸暂停低通气综合征诊治指南(草案)》[5]中OSAHS的诊断标准及2013年版《中国2型糖尿病防治指南》[6]中的糖尿病诊断标准,将纳入患者分为单纯OSAHS组76例和OSAHS伴2型糖尿病组77例。纳入标准: ①年龄18~80岁者; ②确诊OSAHS者。排除标准: ①中枢性睡眠呼吸暂停低通气综合征患者; ②发作性睡病患者; ③接受过OSAHS治疗者; ④妊娠期妇女; ⑤合并急性呼吸道感染者; ⑥严重肺部疾病如慢性阻塞性肺疾病、支气管哮喘、间质性肺疾病、慢性呼吸衰竭等患者; ⑦心功能不全者; ⑧合并糖尿病急性并发症者。
1.2 研究方法
1.2.1 临床资料收集
通过电子病历系统搜索并记录所有入组患者的性别、年龄、身高和体质量,计算体质量指数(BMI); 收集每例患者既往病史[高血压病、动脉粥样硬化性心血管疾病、高脂血症和糖尿病家族史(一级亲属患有2型糖尿病)]、个人史(吸烟史、饮酒史)等信息。
1.2.2 睡眠指标监测
在睡眠室患者信息系统根据住院号或门诊号搜索所有患者的睡眠指标结果并记录,包括呼吸暂停低通气指数(AHI)、氧减指数(ODI)、平均脉搏血氧饱和度(MSpO2)和最低脉搏血氧饱和度(LSpO2)。所有接受PSG监测的患者均在医院睡眠室进行整夜(至少7 h)睡眠监测,并监测鼾声、胸腹呼吸运动、口鼻气流和体位等。SpO2由指触式脉搏血氧饱和度仪监测获得,所有患者监测当天禁饮酒、咖啡,禁服镇静剂及催眠药。
1.3 统计学分析
采用SPSS 20.0统计学软件对数据进行处理,计量资料进行正态性和方差齐性检验,符合正态分布者以(x±s)表示, 2组比较行独立样本t检验,计数资料以[n(%)]表示, 2组比较行χ2检验。OSAHS患者伴2型糖尿病的影响因素分析采用二元Logistic回归分析。采用受试者工作特征(ROC)曲线分析夜间SpO2对OSAHS患者伴2型糖尿病的预测价值。以P<0.05为差异有统计学意义。
2. 结果
2.1 一般资料及睡眠监测指标比较
与单纯OSAHS组比较, OSAHS伴2型糖尿病组患者年龄较大, BMI、AHI、ODI水平和高脂血症患病率、有糖尿病家族史者占比较高, MSpO2、LSpO2水平较低,差异有统计学意义(P<0.05)。2组患者在性别、吸烟史、饮酒史、高血压病及动脉粥样硬化性心血管疾病患病率方面比较,差异无统计学意义(P>0.05)。见表 1。
表 1 2组患者一般资料与睡眠监测指标水平比较(x±s) [n(%)]指标 OSAHS伴2型糖尿病组(n=77) 单纯OSAHS组(n=76) t/χ2 P 年龄/岁 59.19±12.17 54.42±13.14 -2.332 0.021 性别 男 51(66.23) 56(73.68) 1.010 0.315 女 26(33.77) 20(26.32) BMI/(kg/m2) 27.65±4.20 25.52±2.85 -3.680 <0.001 吸烟史 26(33.77) 22(28.95) 0.413 0.521 饮酒史 24(31.17) 22(28.95) 0.09 0.764 高血压病 60(77.92) 55(72.37) 0.632 0.427 高脂血症 46(59.74) 28(36.84) 8.03 0.005 动脉粥样硬化性心血管疾病 31(40.26) 36(47.37) 0.785 0.376 糖尿病家族史 19(24.68) 9(11.84) 4.213 0.040 AHI/(次/h) 31.98±22.22 25.45±17.87 -2.004 0.047 ODI/(次/h) 29.28±23.49 22.46±16.92 -2.063 0.041 MSpO2/% 92.64±3.24 94.50±3.37 3.482 0.001 LSpO2/% 70.61±12.05 78.04±8.97 4.327 <0.001 OSAHS: 阻塞性睡眠呼吸暂停低通气综合征; BMI: 体质量指数; AHI: 呼吸暂停低通气指数; ODI: 氧减指数; MSpO2: 平均脉搏血氧饱和度; LSpO2: 最低脉搏血氧饱和度。 2.2 OSAHS患者伴2型糖尿病的影响因素分析
二元Logistic回归分析结果显示,年龄小(OR=0.247, 95%CI为0.110~0.553, P=0.001)、BMI低(OR=0.366, 95%CI为0.152~0.881, P=0.025)是OSAHS患者伴2型糖尿病的保护因素,高脂血症(OR=2.337, 95%CI为1.068~5.113, P=0.034)、LSpO2降低(OR=3.511, 95%CI为1.132~10.891, P=0.030)是OSAHS患者伴2型糖尿病的危险因素,见表 2。
表 2 OSAHS患者伴2型糖尿病影响因素的二元Logistic回归分析因素 B SE Walds P OR 95%CI 年龄/岁 -1.399 0.412 11.554 0.001 0.247 0.110~0.553 BMI/(kg/m2) -1.004 0.448 5.033 0.025 0.366 0.152~0.881 高脂血症 0.849 0.399 4.517 0.034 2.337 1.068~5.113 糖尿病家族史 0.979 0.512 3.654 0.056 2.661 0.976~7.258 AHI/(次/h) 0.259 0.667 0.151 0.697 1.296 0.351~4.787 ODI/(次/h) 0.469 0.732 0.41 0.522 1.598 0.380~6.712 MSpO2/% 0.762 0.457 2.772 0.096 2.142 0.874~5.251 LSpO2/% 1.256 0.578 4.728 0.030 3.511 1.132~10.891 OSAHS: 阻塞性睡眠呼吸暂停低通气综合征; AHI: 呼吸暂停低通气指数; ODI: 氧减指数; BMI: 体质量指数; MSpO2: 平均脉搏血氧饱和度; LSpO2: 最低脉搏血氧饱和度。 2.3 LSpO2对OSAHS患者伴2型糖尿病的预测价值
ROC曲线结果显示, LSpO2预测OSAHS患者伴2型糖尿病的曲线下面积为0.695(95%CI为0.613~0.777, P<0.001), LSpO2最佳截断值为76.50%(敏感度54.5%, 特异度75.0%), 见图 1。
3. 讨论
OSAHS是临床公认的可引起代谢紊乱尤其是2型糖尿病的独立危险因素[7]。OSAHS患者反复发生的低通气事件会导致IH, 使氧化-抗氧化系统失衡,最终引起体内炎性通路的激活[8-9]。据研究[10-11]报道,慢性炎症反应可能参与胰岛素抵抗和β细胞功能障碍的过程,增加了2型糖尿病的发生风险。缺氧和炎症之间存在密切联系,低氧可通过激活核因子κB(NF-κB)和缺氧诱导因子-1α(HIF-1α)刺激肿瘤坏死因子-α(TNF-α)、白细胞介素-1(IL-1)等各种炎症因子的产生[12]。近年来研究[13]发现, HIF-1α是一种低氧状态下在葡萄糖代谢中起重要作用的因子,可能是胰岛素抵抗和糖尿病发展的原因。SpO2降低是OSAHS患者的主要病理生理变化之一,其引起的氧化应激和炎症反应可能是OSAHS患者伴发2型糖尿病的关键因素[14]。
IH诱导的葡萄糖代谢受损的病理生理学和分子机制尚未完全清楚,但研究[15]证明,夜间IH与葡萄糖代谢受损关系密切, IH可能对OSAHS患者2型糖尿病的发生和进展起关键作用。IH对胰腺β细胞功能、胰岛素抵抗的有害影响已在动物研究中得到证实。一项动物实验[16]发现,慢性IH可能促进导致胰腺β细胞损伤和功能障碍的线粒体源性活性氧的产生。IH还可增加肝脏中磷酸烯醇式丙酮酸羧激酶、葡萄糖6-磷酸酶等糖异生酶的基因表达,引起空腹高血糖,导致2型糖尿病[17]。此外, IH通过诱导脂肪组织的炎症及脂肪分解、影响骨骼肌中葡萄糖摄取和代谢、激活交感神经产生儿茶酚胺等途径增强外周组织和细胞的胰岛素抵抗[2]。
流行病学研究[7]表明, PSG监测的SpO2参数与2型糖尿病的风险预估相关, OSAHS患者的夜间低氧血症与2型糖尿病的早期发病具有相关性,较低的LSpO2水平可使OSAHS患者发生2型糖尿病的年龄更具年轻化的趋势。日本一项前瞻性研究[18]也发现,脉搏血氧仪评估的LSpO2等参数与2型糖尿病的发生风险有关。本研究发现, OSAHS伴2型糖尿病组的LSpO2水平显著低于单纯OSAHS组,进一步分析发现, LSpO2降低是OSAHS患者伴2型糖尿病的危险因素, LSpO2水平降低对OSAHS并发2型糖尿病具有一定的预测价值,与国内外研究[19-22]结果相似。研究[19-20]发现, SpO2水平与OSAHS严重程度有关,可用于预测OSAHS合并代谢综合征的发生。相关研究[21-22]证实,低氧血症及PSG监测中氧饱和参数的降低可能与糖化血红蛋白(HbA1c)水平升高有关。本研究推测, LSpO2降低促使OSAHS患者发生2型糖尿病的原因可能是夜间低氧血症诱导的氧化应激与炎症反应,促进胰岛β细胞损伤、功能障碍及外周组织、细胞的胰岛素抵抗。
持续气道正压通气(CPAP)是OSAHS患者的一线治疗方法,可有效改善低氧状态,缓解嗜睡、觉醒、乏力等症状,提升患者的生活质量,且可降低OSAHS合并2型糖尿病患者的血糖及HbA1c水平。但目前关于纠正低氧状态在改善OSAHS合并2型糖尿病患者并发症发生情况、长期血糖控制中的作用的研究仍较缺乏,未来还需进一步探讨LSpO2干预措施对OSAHS合并2型糖尿病患者远期预后的作用。此外,本研究为单中心研究,数据来源较单一,今后仍需开展大样本量多中心临床研究及纵向研究进一步验证结论和探索具体机制。
综上所述,夜间LSpO2水平与OSAHS患者2型糖尿病的发生有关,且低水平LSpO2可能对OSAHS患者伴发2型糖尿病有一定预测价值。LSpO2便于临床监测且易被患者接受,有望成为一种理想的评估OSAHS患者伴发2型糖尿病的参考指标,而改善低氧状态、上调LSpO2水平或可成为OSAHS合并2型糖尿病患者新的治疗思路与手段。
-
表 1 NOS评估纳入研究的质量
作者 年份 研究人群选择 组间可比性 结果测量 评分/分 暴露组代表性 非暴露组选择方法 暴露因素确定 研究时无要观察的结局指标 主要因素 附加因素 结果评价 随访时间 随访充分程度 WU D G等[4] 2022 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 DI R Y等[5] 2021 ☆ ☆ ☆ ☆ ☆ ☆ - ☆ - 7 LIANG C H等[6] 2021 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 LU D L等[7] 2021 ☆ ☆ ☆ - ☆ ☆ - - - 5 KAMIDE T等[8] 2020 ☆ ☆ ☆ ☆ ☆ ☆ - - - 6 OTA N等[9] 2020 ☆ ☆ ☆ ☆ ☆ ☆ - - - 6 OTANI N等[10] 2020 ☆ ☆ ☆ ☆ ☆ ☆ - ☆ - 7 HIRATA K等[11] 2019 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 SILVA M A等[12] 2018 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 JIA Z Y等[13] 2018 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 KAMIDE T等[14] 2018 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 KIM S Y等[15] 2017 ☆ ☆ ☆ ☆ ☆ ☆ - ☆ - 7 LYU N等[16] 2016 ☆ ☆ ☆ ☆ ☆ - ☆ ☆ ☆ 8 PAHL F H等[17] 2016 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 PARK W等[18] 2015 ☆ ☆ ☆ ☆ ☆ - - ☆ - 6 DURST C R等[19] 2014 ☆ ☆ ☆ ☆ ☆ - - - ☆ 6 LAI L T等[20] 2013 ☆ ☆ ☆ ☆ ☆ - - ☆ ☆ 7 MATTINGLY T等[21] 2013 ☆ ☆ ☆ ☆ ☆ ☆ - - - 6 WANG Y等[22] 2013 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 WANG Y等[23] 2013 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 DEHDASHTI A R等[24] 2012 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 NANDA A等[25] 2011 ☆ ☆ ☆ ☆ ☆ - - ☆ - 6 SUN Y等[26] 2011 ☆ ☆ ☆ ☆ ☆ ☆ - ☆ ☆ 8 YADLA S等[27] 2011 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 SHARMA B S等[28] 2010 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 XU B N等[29] 2010 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 DE OLIVEIRA J G等[30] 2009 ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 9 RACO A等[31] 2008 ☆ ☆ ☆ ☆ ☆ - - ☆ - 6 HERAN N等[32] 2007 ☆ ☆ ☆ ☆ ☆ ☆ - ☆ - 7 NONAKA T等[33] 2007 ☆ ☆ ☆ ☆ ☆ - - - - 5 ZHAO J Z等[34] 2006 ☆ ☆ ☆ ☆ ☆ - - ☆ - 6 BARAMI K等[35] 2003 ☆ ☆ ☆ ☆ ☆ ☆ - ☆ ☆ 8 PARK H K等[36] 2003 ☆ ☆ ☆ ☆ ☆ - - ☆ - 6 HOH B L等[37] 2001 ☆ ☆ ☆ ☆ ☆ - - - - 5 ARNAUTOVIC K I等[38] 1998 ☆ ☆ ☆ ☆ ☆ ☆ - - - 6 FRIES G等[39] 1997 ☆ ☆ ☆ ☆ ☆ - - ☆ - 6 DIAZ F G等[40] 1989 ☆ ☆ ☆ ☆ ☆ - - ☆ - 6 ☆代表得1分。 表 2 纳入文献的基本信息
作者 年份 国家 栓塞 夹闭 研究类型 平均年龄/岁 随访时间/月 WU D G等[4] 2022 中国 98 — 回顾,单臂 60.21 8.25 DI R Y等[5] 2021 中国 118 — 回顾,单臂 56.84 10 LIANG C H等[6] 2021 中国 30 — 回顾,单臂 54.87 18 LU D L等[7] 2021 中国 — 63 回顾,单臂 54.7 — KAMIDE T等[8] 2020 美国 — 231 回顾,单臂 53.2 — OTA N等[9] 2020 日本 — 94 回顾,单臂 54 — OTANI N等[10] 2020 日本 — 38 回顾,单臂 56.5 43.2 HIRATA K等[11] 2019 日本 6 — 回顾,单臂 59.2 22.5 SILVA M A等[12] 2018 美国 23 — 回顾,对比 55.6 23.7 SILVA M A等[12] 2018 美国 — 30 回顾,对比 52 22.5 JIA Z Y等[13] 2018 中国 34 — 回顾,单臂 58.2 6 KAMIDE T等[14] 2018 美国 — 208 回顾,单臂 52 6 KIM S Y等[15] 2017 韩国 98 — 回顾,单臂 55.7 34 LYU N等[16] 2016 中国 129 — 回顾,单臂 52 8.1 PAHL F H等[17] 2016 巴西 — 43 回顾,单臂 53.1 29.82 PARK W等[18] 2015 韩国 33 — 回顾,单臂 59.4 10.4 DURST C R等[19] 2014 美国 65 — 回顾,单臂 56 — LAI L T等[20] 2013 澳大利亚 — 173 回顾,单臂 50.6 30.3 MATTINGLY T等[21] 2013 加拿大 — 18 回顾,单臂 53.9 — WANG Y等[22] 2013 中国 142 — 回顾,单臂 52.1 16.6 WANG Y等[23] 2013 中国 64 — 回顾,单臂 52 18.45 DEHDASHTI A R等[24] 2012 加拿大 — 20 回顾,单臂 49 24 NANDA A等[25] 2011 美国 — 76 回顾,单臂 52 27.38 SUN Y等[26] 2011 中国 30 — 回顾,单臂 51.3 12.8 YADLA S等[27] 2011 美国 147 — 回顾,对比 50.8 20 YADLA S等[27] 2011 美国 — 17 回顾,对比 50.8 20 SHARMA B S等[28] 2010 印度 — — 回顾,单臂 42 8 XU B N等[29] 2010 中国 — 51 回顾,单臂 54.5 6 DE OLIVEIRA J G等[30] 2009 巴西 — 8 回顾,单臂 51.4 38.5 RACO A等[31] 2008 意大利 — 88 回顾,单臂 — 126 HERAN N等[32] 2007 美国 17 — 回顾,单臂 60.9 40.08 NONAKA T等[33] 2007 日本 — 7 回顾,单臂 57.7 — ZHAO J Z等[34] 2006 中国 — 60 回顾,单臂 — 3 BARAMI K等[35] 2003 美国 — 58 回顾,单臂 50.6 6 PARK H K等[36] 2003 美国 73 — 回顾,单臂 53.6 14.4 HOH B L等[37] 2001 美国 — 169 回顾,对比 52.4 — HOH B L等[37] 2001 美国 57 — 回顾,对比 52.4 6 ARNAUTOVIC K I等[38] 1998 美国 — 16 回顾,单臂 48.1 — FRIES G等[39] 1997 德国 — 51 回顾,单臂 50 72 DIAZ F G等[40] 1989 美国 — 15 回顾,单臂 55.6 39 -
[1] BROWN B, HANEL R A. Endovascular management of cavernous and paraclinoid aneurysms[J]. Neurosurg Clin N Am, 2014, 25(3): 415-424. doi: 10.1016/j.nec.2014.04.017
[2] FLORES B C, WHITE J A, BATJER H H, et al. The 25th anniversary of the retrograde suction decompression technique (Dallas technique) for the surgical management of paraclinoid aneurysms: historical background, systematic review, and pooled analysis of the literature[J]. J Neurosurg, 2018, 130(3): 902-916.
[3] SERRANO L E, AYYAD A, ARCHAVLIS E, et al. A literature review concerning contralateral approaches to paraclinoid internal carotid artery aneurysms[J]. Neurosurg Rev, 2019, 42(4): 877-884. doi: 10.1007/s10143-018-01063-3
[4] WU D G, LAI N S, ZHAO X T, et al. Enterprise 2 stent-assisted embolization of paraclinoid aneurysms: a single center preliminary study[J]. Clin Interv Aging, 2022, 17: 1833-1840. doi: 10.2147/CIA.S390882
[5] DI R Y, GE L, LU G, et al. Clinical and angiographic outcomes of stent-assisted coiling of paraclinoid aneurysms: comparison of LVIS and neuroform stents[J]. J Clin Neurosci, 2021, 83: 1-7. doi: 10.1016/j.jocn.2020.11.047
[6] LIANG C H, GUANG Y Z, HOU K. Balloon-assisted coils embolization for ophthalmic segment aneurysms of the internal carotid Artery[J]. Front Neurol, 2021, 12: 658661. doi: 10.3389/fneur.2021.658661
[7] LU D L, XIONG J, LIU H J, et al. Surgical clipping of ophthalmic artery aneurysms: a single center series[J]. Br J Neurosurg, 2021, 35(2): 157-160. doi: 10.1080/02688697.2020.1775787
[8] KAMIDE T, BURKHARDT J K, TABANI H, et al. Microsurgical clipping techniques and outcomes for paraclinoid internal carotid artery aneurysms[J]. Oper Neurosurg, 2019, 18(2): 183-192.
[9] OTA N, PETRAKAKIS I, NODA K, et al. Predictor of visual impairment following paraclinoid aneurysm surgery: special consideration of surgical microanatomy related to paraclinoid structures[J]. Oper Neurosurg, 2020, 20(1): 45-54.
[10] OTANI N, MORI K, WADA K, et al. Limited indications for clipping surgery of paraclinoid aneurysm based on long-term visual morbidity[J]. World Neurosurg, 2020, 134: e153-e161. doi: 10.1016/j.wneu.2019.09.147
[11] HIRATA K, ITO Y, TSURUTA W, et al. Treatment outcomes of cerebral aneurysms presenting with optic neuropathy: a retrospective case series[J]. Asian J Neurosurg, 2019, 14(2): 499-505. doi: 10.4103/ajns.AJNS_294_18
[12] SILVA M A, SEE A P, DASENBROCK H H, et al. Vision outcomes in patients with paraclinoid aneurysms treated with clipping, coiling, or flow diversion: a systematic review and meta-analysis[J]. Neurosurg Focus, 2017, 42(6): E15. doi: 10.3171/2017.3.FOCUS1718
[13] JIA Z Y, SONG Y S, SHEEN J J, et al. Loop microcatheter technique for coil embolization of paraclinoid aneurysms[J]. Acta Neurochir, 2018, 160(9): 1755-1760. doi: 10.1007/s00701-018-3642-5
[14] KAMIDE T, TABANI H, SAFAEE M M, et al. Microsurgical clipping of ophthalmic artery aneurysms: surgical results and visual outcomes with 208 aneurysms[J]. J Neurosurg, 2018, 129(6): 1511-1521. doi: 10.3171/2017.7.JNS17673
[15] KIM S Y, PARK D S, PARK H Y, et al. Simple coiling versus stent-assisted coiling of paraclinoid aneurysms: radiological outcome in a single center study[J]. J Korean Neurosurg Soc, 2017, 60(6): 644-653. doi: 10.3340/jkns.2017.0193
[16] LYU N, ZHAO R, YANG P F, et al. Predictors of recurrence after stent-assisted coil embolization of paraclinoid aneurysms[J]. J Clin Neurosci, 2016, 33: 173-176. doi: 10.1016/j.jocn.2016.03.039
[17] PAHL F H, DE OLIVEIRA M F, BROCK R S, et al. Surgical clipping is still a good choice for the treatment of paraclinoid aneurysms[J]. Arq Neuro-Psiquiatr, 2016, 74(4): 314-319. doi: 10.1590/0004-282X20150215
[18] PARK W, PARK J C, HAN K, et al. Anterior optic pathway compression due to internal carotid artery aneurysms: neurosurgical management and outcomes[J]. J Stroke, 2015, 17(3): 344-353. doi: 10.5853/jos.2015.17.3.344
[19] DURST C R, STARKE R M, GAUGHEN J, et al. Vision outcomes and major complications after endovascular coil embolization of ophthalmic segment aneurysms[J]. AJNR Am J Neuroradiol, 2014, 35(11): 2140-2145. doi: 10.3174/ajnr.A4032
[20] LAI L T, MORGAN M K. Outcomes for unruptured ophthalmic segment aneurysm surgery[J]. J Clin Neurosci, 2013, 20(8): 1127-1133. doi: 10.1016/j.jocn.2012.12.004
[21] MATTINGLY T, KOLE M K, NICOLLE D, et al. Visual outcomes for surgical treatment of large and giant carotid ophthalmic segment aneurysms: a case series utilizing retrograde suction decompression (the "Dallas technique")[J]. J Neurosurg, 2013, 118(5): 937-946. doi: 10.3171/2013.2.JNS12735
[22] WANG Y, LI Y X, JIANG C H, et al. Endovascular treatment of paraclinoid aneurysms: 142 aneurysms in one centre[J]. J Neurointerv Surg, 2013, 5(6): 552-556. doi: 10.1136/neurintsurg-2012-010494
[23] WANG Y, LI Y X, JIANG C H, et al. Could the types of paraclinoid aneurysm be used as a criterion in choosing endovascular treatment Neuro-radiologists' view[J]. Acta Neurochir, 2013, 155(11): 2019-2027. doi: 10.1007/s00701-013-1830-x
[24] DEHDASHTI A R, LE ROUX A, BACIGALUPPI S, et al. Long-term visual outcome and aneurysm obliteration rate for very large and giant ophthalmic segment aneurysms: assessment of surgical treatment[J]. Acta Neurochir, 2012, 154(1): 43-52. doi: 10.1007/s00701-011-1167-2
[25] NANDA A, JAVALKAR V. Microneurosurgical management of ophthalmic segment of the internal carotid artery aneurysms: single-surgeon operative experience from Louisiana state university, Shreveport[J]. Neurosurgery, 2011, 68(2): 355-371. doi: 10.1227/NEU.0b013e3182039819
[26] SUN Y, LI Y, LI A M. Endovascular treatment of paraclinoid aneurysms[J]. Interv Neuroradiol, 2011, 17(4): 425-430. doi: 10.1177/159101991101700405
[27] YADLA S, CAMPBELL PG, GROBELNY B, et al. Open and endovascular treatment of unruptured carotid-ophthalmic aneurysms: clinical and radiographic outcomes[J]. Neurosurgery, 2011, 68(5): 1434-1443. doi: 10.1227/NEU.0b013e31820b4f85
[28] SHARMA B S, KASLIWAL M K, SURI A, et al. Outcome following surgery for ophthalmic segment aneurysms[J]. J Clin Neurosci, 2010, 17(1): 38-42. doi: 10.1016/j.jocn.2009.04.022
[29] XU B N, SUN Z H, ROMANI R, et al. Microsurgical management of large and giant paraclinoid aneurysms[J]. World Neurosurg, 2010, 73(3): 137-146. doi: 10.1016/j.surneu.2009.07.042
[30] DE OLIVEIRA J G, BORBA L A, RASSI-NETO A, et al. Intracranial aneurysms presenting with mass effect over the anterior optic pathways: neurosurgical management and outcomes[J]. Neurosurg Focus, 2009, 26(5): E3. doi: 10.3171/2009.3.FOCUS0924
[31] RACO A, FRATI A, SANTORO A, et al. Long-term surgical results with aneurysms involving the ophthalmic segment of the carotid artery[J]. J Neurosurg, 2008, 108(6): 1200-1210. doi: 10.3171/JNS/2008/108/6/1200
[32] HERAN N, SONG J K, KUPERSMITH M, et al. Large ophthalmic segment aneurysms with anterior optic pathway compression: assessment of anatomical and visual outcomes after endosaccular coil therapy[J]. J Neurosurg, 2007, 106(6): 968-975. doi: 10.3171/jns.2007.106.6.968
[33] NONAKA T, HARAGUCHI K, BABA T, et al. Clinical manifestations and surgical results for paraclinoid cerebral aneurysms presenting with visual symptoms[J]. Surg Neurol, 2007, 67(6): 612-619. doi: 10.1016/j.surneu.2006.08.074
[34] ZHAO J Z, WANG S, ZHAO Y L, et al. Microneurosurgical management of carotid-ophthalmic aneurysms[J]. J Clin Neurosci, 2006, 13(3): 330-333. doi: 10.1016/j.jocn.2005.04.029
[35] BARAMI K, HERNANDEZ V S, DIAZ F G, et al. Paraclinoid carotid aneurysms: surgical management, complications, and outcome based on a new classification scheme[J]. Skull Base, 2003, 13(1): 31-41.
[36] PARK H K, HOROWITZ M, JUNGREIS C, et al. Endovascular treatment of paraclinoid aneurysms: experience with 73 patients[J]. Neurosurgery, 2003, 53(1): 14-24. doi: 10.1227/01.NEU.0000068789.08955.1C
[37] HOH B L, CARTER B S, BUDZIK R F, et al. Results after surgical and endovascular treatment of paraclinoid aneurysms by a combined neurovascular team[J]. Neurosurgery, 2001, 48(1): 78-90.
[38] ARNAUTOVIC K I, AL-MEFTY O, ANGTUACO E. A combined microsurgical skull-base and endovascular approach to giant and large paraclinoid aneurysms[J]. Surg Neurol, 1998, 50(6): 504-520. doi: 10.1016/S0090-3019(97)80415-6
[39] FRIES G, PERNECZKY A, VAN LINDERT E, et al. Contralateral and ipsilateral microsurgical approaches to carotid-ophthalmic aneurysms[J]. Neurosurgery, 1997, 41(2): 333-343. doi: 10.1097/00006123-199708000-00001
[40] DIAZ F G, OHAEGBULAM S, DUJOVNY M, et al. Surgical alternatives in the treatment of cavernous sinus aneurysms[J]. J Neurosurg, 1989, 71(6): 846-853. doi: 10.3171/jns.1989.71.6.0846
[41] JEON J S, AHN J H, HUH W, et al. A retrospective analysis on the natural history of incidental small paraclinoid unruptured aneurysm[J]. J Neurol Neurosurg Psychiatry, 2014, 85(3): 289-294. doi: 10.1136/jnnp-2013-305019
[42] KALLURI A G, SUKUMARAN M, NAZARI P, et al. Retrospective review of 290 small carotid cave aneurysms over 17 years[J]. J Neurosurg, 2019, 18: 1-5.
[43] MOLYNEUX A, KERR R, STRATTON I, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial[J]. Lancet, 2002, 360(9342): 1267-1274. doi: 10.1016/S0140-6736(02)11314-6
[44] MOLYNEUX A J, BIRKS J, CLARKE A, et al. The durability of endovascular coiling versus neurosurgical clipping of ruptured cerebral aneurysms: 18 year follow-up of the UK cohort of the International Subarachnoid Aneurysm Trial (ISAT)[J]. Lancet, 2015, 385(9969): 691-697. doi: 10.1016/S0140-6736(14)60975-2
[45] MOLYNEUX A J, KERR R S C, YU L M, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion[J]. Lancet, 2005, 366(9488): 809-817. doi: 10.1016/S0140-6736(05)67214-5
[46] BRINJIKJI W, RABINSTEIN A A, NASR D M, et al. Better outcomes with treatment by coiling relative to clipping of unruptured intracranial aneurysms in the United States, 2001-2008[J]. AJNR Am J Neuroradiol, 2011, 32(6): 1071-1075. doi: 10.3174/ajnr.A2453
[47] FALK DELGADO A, ANDERSSON T, FALK DELGADO A. Ruptured carotid-ophthalmic aneurysm treatment: a non-inferiority meta-analysis comparing endovascular coiling and surgical clipping[J]. Br J Neurosurg, 2017, 31(3): 345-349. doi: 10.1080/02688697.2017.1297371
[48] SUN Y, WAN B L, LI Q, et al. Endovascular treatment for cavernous carotid aneurysms: a systematic review and meta-analysis[J]. J Stroke Cerebrovasc Dis, 2020, 29(6): 104808. doi: 10.1016/j.jstrokecerebrovasdis.2020.104808
[49] CHOULAKIAN A, DRAZIN D, ALEXANDER M J. Endosaccular treatment of 113 cavernous carotid artery aneurysms[J]. J Neurointerv Surg, 2010, 2(4): 359-362. doi: 10.1136/jnis.2010.003137
[50] ASAID M, O'NEILL A H, BERVINI D, et al. Unruptured paraclinoid aneurysm treatment effects on visual function: systematic review and meta-analysis[J]. World Neurosurg, 2017, 106: 322-330. doi: 10.1016/j.wneu.2017.06.135
[51] MARIO Z, NOHRA C, STARKE ROBERT M, et al. Flow diversion versus conventional treatment for carotid cavernous aneurysms[J]. Stroke, 2014, 45(9): 2656-2661. doi: 10.1161/STROKEAHA.114.006247
[52] HOU K, LI G C, GUO Y B, et al. Endovascular treatment for aneurysms at the A1 segment of the anterior cerebral artery: current difficulties and solutions[J]. Acta Neurol Belg, 2020, 121: 55-69.
[53] STARKE R M, CHALOUHI N, ALI M S, et al. Endovascular treatment of carotid cavernous aneurysms: complications, outcomes and comparison of interventional strategies[J]. J Clin Neurosci, 2014, 21(1): 40-46. doi: 10.1016/j.jocn.2013.03.003
[54] MIYACHI S, OHNISHI H, HIRAMATSU R, et al. Innovations in endovascular treatment strategies for large carotid cavernous aneurysms—the safety and efficacy of a flow diverter[J]. J Stroke Cerebrovasc Dis, 2017, 26(5): 1071-1080. doi: 10.1016/j.jstrokecerebrovasdis.2016.12.023
[55] BECSKE T, BRINJIKJI W, POTTS M B, et al. Long-term clinical and angiographic outcomes following pipeline embolization device treatment of complex internal carotid artery aneurysms: five-year results of the pipeline for uncoilable or failed aneurysms trial[J]. Neurosurgery, 2017, 80(1): 40-48. doi: 10.1093/neuros/nyw014