肺电阻抗成像技术在个体化呼气末正压通气中的应用进展

孙高悦, 李云

孙高悦, 李云. 肺电阻抗成像技术在个体化呼气末正压通气中的应用进展[J]. 实用临床医药杂志, 2023, 27(17): 140-144, 148. DOI: 10.7619/jcmp.20230745
引用本文: 孙高悦, 李云. 肺电阻抗成像技术在个体化呼气末正压通气中的应用进展[J]. 实用临床医药杂志, 2023, 27(17): 140-144, 148. DOI: 10.7619/jcmp.20230745
SUN Gaoyue, LI Yun. Application progress of electrical impedance tomographyin in individualized positive end-expiratory pressure[J]. Journal of Clinical Medicine in Practice, 2023, 27(17): 140-144, 148. DOI: 10.7619/jcmp.20230745
Citation: SUN Gaoyue, LI Yun. Application progress of electrical impedance tomographyin in individualized positive end-expiratory pressure[J]. Journal of Clinical Medicine in Practice, 2023, 27(17): 140-144, 148. DOI: 10.7619/jcmp.20230745

肺电阻抗成像技术在个体化呼气末正压通气中的应用进展

基金项目: 

安徽高校自然科学研究项目 KJ2019ZD24

详细信息
    通讯作者:

    李云, E-mail: yunli_001@aliyun.com

  • 中图分类号: R614;R563.4

Application progress of electrical impedance tomographyin in individualized positive end-expiratory pressure

  • 摘要:

    电阻抗成像技术(EIT)通过获取患者肺生物阻抗变化, 能够无创、无辐射、实时监测肺内通气情况, 可指导机械通气中个体化呼气末正压(PEEP)的设定。EIT与肺顺应性、驱动压、肺超声等滴定个体化PEEP的方式相比, 具有可视化、实时动态观察肺总体与局部通气情况等优点。本文综述了EIT的原理、PEEP的作用以及利用EIT参数指导个体化PEEP的设定及其设定中的局限性, 以期为EIT的临床应用提供参考。

    Abstract:

    Electrical impedance tomography (EIT) can monitor pulmonary ventilation in real time and non-invasions by obtaining the changes of pulmonary bioimpedance. It can guide the setting of individualized positiveend-expiratory pressure (PEEP) in mechanical ventilation. Compared with the methods of titrating individual PEEP such as lung compliance, driving pressure and pulmonary ultrasound, EIT has the advantages of visualization, real-time dynamic observation of the overall and local lung ventilation. This paper reviewed the principle of EIT, the function of PEEP, the setting of individualized PEEP with EIT parameters and its limitations, in order to provide reference for the clinical application of EIT.

  • [1]

    YOUNG C C, HARRIS E M, VACCHIANO C, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations[J]. Br J Anaesth, 2019, 123(6): 898-913. doi: 10.1016/j.bja.2019.08.017

    [2]

    RUSZKAI Z, KISS E, LÁSZLÓI, et al. Effects of intraoperative positive end-expiratory pressure optimization on respiratory mechanics and the inflammatory response: a randomized controlled trial[J]. J Clin Monit Comput, 2021, 35(3): 469-482. doi: 10.1007/s10877-020-00519-6

    [3]

    ERONIA N, MAURI T, MAFFEZZINI E, et al. Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study[J]. Ann Intensive Care, 2017, 7(1): 76. doi: 10.1186/s13613-017-0299-9

    [4]

    SPADARO S, GRASSO S, KARBING D S, et al. Physiologic evaluation of ventilation perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation[J]. Anesthesiology, 2018, 128(3): 531-538. doi: 10.1097/ALN.0000000000002011

    [5]

    FRERICHS I, AMATO M B P, VAN KAAM A H, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group[J]. Thorax, 2017, 72(1): 83-93. doi: 10.1136/thoraxjnl-2016-208357

    [6]

    FRERICHS I, LASAROW L, STRODTHOFF C, et al. Spatial ventilation inhomogeneity determined by electrical impedance tomography in patients with chronic obstructive lung disease[J]. Front Physiol, 2021, 12: 762791. doi: 10.3389/fphys.2021.762791

    [7]

    PUTENSEN C, HENTZE B, MUENSTER S, et al. Electrical impedance tomography for cardio-pulmonary monitoring[J]. J Clin Med, 2019, 8(8): 1176. doi: 10.3390/jcm8081176

    [8]

    WANG X C, ZHAO H, CUI N. The role of electrical impedance tomography for management of high-risk pulmonary embolism in a postoperative patient[J]. Front Med, 2021, 8: 773471. doi: 10.3389/fmed.2021.773471

    [9]

    WANG G, ZHANG L, LI B, et al. The application of electrical impedance tomography during the ventilator weaning process[J]. Int J Gen Med, 2021, 14: 6875-6883. doi: 10.2147/IJGM.S331772

    [10]

    SELLA N, ZARANTONELLO F, ANDREATTA G, et al. Positive end-expiratory pressure titration in COVID-19 acute respiratory failure: electrical impedance tomography vs. PEEP/FiO2 tables[J]. Crit Care, 2020, 24(1): 540. doi: 10.1186/s13054-020-03242-5

    [11]

    LIU K, HUANG C Y, XU M Y, et al. PEEP guided by electrical impedance tomography during one-lung ventilation in elderly patients undergoing thoracoscopic surgery[J]. Ann Transl Med, 2019, 7(23): 757. doi: 10.21037/atm.2019.11.95

    [12]

    ZHU C, YAO J W, AN L X, et al. Effects of intraoperative individualized PEEP on postoperative atelectasis in obese patients: study protocol for a prospective randomized controlled trial[J]. Trials, 2020, 21(1): 618. doi: 10.1186/s13063-020-04565-y

    [13]

    NESTLER C, SIMON P, PETROFF D, et al. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: a randomized controlled clinical trial using electrical impedance tomography[J]. Br J Anaesth, 2017, 119(6): 1194-1205. doi: 10.1093/bja/aex192

    [14]

    SELLA N, BOSCOLO A, ZARANTONELLO F, et al. Electrical impedance tomography for positive end-expiratory pressure setting after bilateral lung transplantation[J]. J Heart Lung Transplant, 2021, 40(4): S317.

    [15]

    ÖSTBERG E, THORISSON A, ENLUND M, et al. Positive end-expiratory pressure alone minimizes atelectasis formation in nonabdominal surgery: a randomized controlled trial[J]. Anesthesiology, 2018, 128(6): 1117-1124. doi: 10.1097/ALN.0000000000002134

    [16]

    EICHLER L, TRUSKOWSKA K, DUPREE A, et al. Intraoperative ventilation of morbidly obese patients guided by transpulmonary pressure[J]. Obes Surg, 2018, 28(1): 122-129. doi: 10.1007/s11695-017-2794-3

    [17]

    MAURI T, ERONIA N, TURRINI C, et al. Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography[J]. Intensive Care Med, 2016, 42(10): 1576-1587. doi: 10.1007/s00134-016-4467-4

    [18]

    WRITING COMMITTEE FOR THE PROBESE COLLABORATIVE GROUP OF THE PROTECTIVE VENTILATION NETWORK (PROVENET) FOR THE CLINICAL TRIAL NETWORK OF THE EUROPEAN SOCIETY OF ANAESTHESIOLOGY, BLUTH T, SERPA NETO A, et al. Effect of intraoperative high positive end-expiratory pressure (PEEP) with recruitment maneuvers vs low PEEP on postoperative pulmonary complications in obese patients: a randomized clinical trial[J]. JAMA, 2019, 321(23): 2292-2305. doi: 10.1001/jama.2019.7505

    [19]

    ZHANG Y Y, ZHANG M, WANG X A, et al. Individualized positive end-expiratory pressure in patients undergoing thoracoscopic lobectomy: a randomized controlled trial[J]. Braz J Anesthesiol, 2021, 71(5): 565-571.

    [20]

    COSTA E L, BORGES J B, MELO A, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography[J]. Intensive Care Med, 2009, 35(6): 1132-1137. doi: 10.1007/s00134-009-1447-y

    [21]

    PEREIRA S M, TUCCI M R, MORAIS C C A, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis[J]. Anesthesiology, 2018, 129(6): 1070-1081. doi: 10.1097/ALN.0000000000002435

    [22]

    VAN DER ZEE P, SOMHORST P, ENDEMAN H, et al. Electrical impedance tomography for positive end-expiratory pressure titration in COVID-19-related acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2020, 202(2): 280-284. doi: 10.1164/rccm.202003-0816LE

    [23]

    ATSUKO S, NOZOMI K, TATSUYA F, et al. Positive end-expiratory pressure and distribution of ventilation in pneumoperitoneum combined with steep trendelenburg position[J]. Anesthesiology, 2020, 132(3): 476-490. doi: 10.1097/ALN.0000000000003062

    [24]

    HE X Y, JIANG J J, LIU Y L, et al. Electrical impedance tomography-guided PEEP titration in patients undergoing laparoscopic abdominal surgery[J]. Medicine, 2016, 95(14): e3306. doi: 10.1097/MD.0000000000003306

    [25]

    ZHAO Z Q, MÖLLER K, STEINMANN D, et al. Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution[J]. Intensive Care Med, 2009, 35(11): 1900-1906. doi: 10.1007/s00134-009-1589-y

    [26]

    ZHAO Z Q, PULLETZ S, FRERICHS I, et al. The EIT-based global inhomogeneity index is highly correlated with regional lung opening in patients with acute respiratory distress syndrome[J]. BMC Res Notes, 2014, 7: 82. doi: 10.1186/1756-0500-7-82

    [27]

    ZHAO Z Q, LEE L C, CHANG M Y, et al. The incidence and interpretation of large differences in EIT-based measures for PEEP titration in ARDS patients[J]. J Clin Monit Comput, 2020, 34(5): 1005-1013. doi: 10.1007/s10877-019-00396-8

    [28]

    ZHAO Z Q, STEINMANN D, FRERICHS I, et al. PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography[J]. Crit Care, 2010, 14(1): R8. doi: 10.1186/cc8860

    [29]

    HE H W, CHI Y, YANG Y Y, et al. Early individualized positive end-expiratory pressure guided by electrical impedance tomography in acute respiratory distress syndrome: a randomized controlled clinical trial[J]. Crit Care, 2021, 25(1): 230. doi: 10.1186/s13054-021-03645-y

    [30]

    SHONO A, KOTANI T. Clinical implication of monitoring regional ventilation using electrical impedance tomography[J]. J Intensive Care, 2019, 7: 4. doi: 10.1186/s40560-019-0358-4

    [31]

    GIRRBACH F, ZEUTZSCHEL F, SCHULZ S, et al. Methods for determination of individual PEEP for intraoperative mechanical ventilation using a decremental PEEP trial[J]. J Clin Med, 2022, 11(13): 3707. doi: 10.3390/jcm11133707

    [32]

    GIRRBACH F, PETROFF D, SCHULZ S, et al. Individualised positive end-expiratory pressure guided by electrical impedance tomography for robot-assisted laparoscopic radical prostatectomy: a prospective, randomised controlled clinical trial[J]. Br J Anaesth, 2020, 125(3): 373-382. doi: 10.1016/j.bja.2020.05.041

    [33]

    SCARAMUZZO G, SPADARO S, DALLA CORTE F, et al. Personalized positive end-expiratory pressure in acute respiratory distress syndrome: comparison between optimal distribution of regional ventilation and positive transpulmonary pressure[J]. Crit Care Med, 2020, 48(8): 1148-1156. doi: 10.1097/CCM.0000000000004439

    [34]

    BITO K, SHONO A, KIMURA S, et al. Clinical implications of determining individualized positive end-expiratory pressure using electrical impedance tomography in post-cardiac surgery patients: a prospective, non-randomized interventional study[J]. J Clin Med, 2022, 11(11): 3022. doi: 10.3390/jcm11113022

    [35]

    SU P L, LIN W C, KO Y F, et al. Electrical impedance tomography analysis between two similar respiratory system compliance during decremetal PEEP titration in ARDS patients[J]. J Med Biol Eng, 2021, 41(6): 888-894. doi: 10.1007/s40846-021-00668-2

    [36]

    SLOBOD D, LEALI M, SPINELLI E, et al. Integrating electrical impedance tomography and transpulmonary pressure monitoring to personalize PEEP in hypoxemic patients undergoing pressure support ventilation[J]. Crit Care, 2022, 26(1): 314. doi: 10.1186/s13054-022-04198-4

    [37]

    GRIVANS C, STENQVIST O. Gas distribution by EIT during PEEP inflation: peep response and optimal PEEP with lowest trans-pulmonary driving pressure can be determined without esophageal pressure during a rapid PEEP trial in patients with acute respiratory failure[J]. Physiol Meas, 2022, 43(11): 114001. doi: 10.1088/1361-6579/ac8ccc

    [38]

    ZHAO Z Q, CHEN T F, TENG H C, et al. Is there a need for individualized adjustment of electrode belt position during EIT-guided titration of positive end-expiratory pressure[J]. Physiol Meas, 2022, 43(6): 064001. doi: 10.1088/1361-6579/ac73d6

  • 期刊类型引用(9)

    1. 冯嘉伟. 宫颈液基细胞学检查与宫颈病变临床病理分析. 实用妇科内分泌电子杂志. 2024(06): 79-81 . 百度学术
    2. 况漫,马亚琳,朱贵娟. 湖北十堰地区女性HPV感染分布及类型特征分析. 公共卫生与预防医学. 2023(01): 127-130 . 百度学术
    3. 唐绥清. 液基细胞学检查及高危HPV检测联合阴道镜检查对宫颈癌筛查的临床意义. 中国社区医师. 2021(03): 141-142 . 百度学术
    4. 付敏,陈路燕. HPV及TCT联合阴道镜活检在宫颈癌分层筛查中的临床应用价值. 当代医学. 2021(12): 74-76 . 百度学术
    5. 王熙,王丽莎,杨翠,贾立云,潘雪娇,杨会欣,马翠霞,祁麟. 石家庄市育龄女性人乳头瘤病毒感染及病毒分型情况分析. 中国性科学. 2021(05): 84-87 . 百度学术
    6. 田秋艳. 宫颈液基细胞学与人乳头瘤病毒检测在宫颈低级别上皮内病变中的相关性研究. 中国社区医师. 2021(29): 111-112 . 百度学术
    7. 柏永华,曾丽莉,纪青. 宫颈液基细胞学检查对宫颈病变的筛查价值. 中国卫生标准管理. 2020(04): 122-124 . 百度学术
    8. 刘群香,王莉,李江丽. 持续感染状态的HPV-16及HPV-58亚型在宫颈病变中的分布及危险因素. 河北医学. 2020(04): 541-545 . 百度学术
    9. 唐永红,刘涛,彭健. 人乳头瘤病毒在宫颈病变中的感染分型及其特点. 系统医学. 2020(17): 134-136 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  140
  • HTML全文浏览量:  41
  • PDF下载量:  20
  • 被引次数: 15
出版历程
  • 收稿日期:  2023-03-09
  • 修回日期:  2023-05-18
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2023-09-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭