Bioinformatics mining of ferroptosis-related biomarkers and development of a diagnostic model in primary Sjögren's syndrome
-
摘要:目的
基于多种生物信息学手段识别原发性干燥综合征(pSS)中与铁死亡相关的基因并构建诊断模型, 为pSS的诊断和治疗提供潜在靶点。
方法从GEO数据库中获得pSS的基因表达矩阵,应用R软件limma包识别出差异表达基因(DEGs)。通过加权基因共表达网络分析(WGCNA)识别pSS中最相关的模块化基因,从FerrDb数据库获得铁死亡相关基因集,将pSS中最相关的模块基因与DEGs和铁死亡相关基因取交集识别出关键基因。通过2种机器学习算法去除冗余基因并构建由关键基因组成的诊断模型,在3个独立数据集中验证诊断模型的准确性,基于免疫浸润分析揭示关键基因与免疫细胞的关联,应用Seurat软件包分析单细胞数据集。
结果差异基因分析共获得265个DEGs, WGCNA获得1个与pSS最为相关的模块(r=0.44, P < 0.01), 从中识别8个铁死亡相关基因,去除冗余基因后,最终获得3个与铁死亡相关的关键基因(PARP9、PARP12、PARP14)。基于3个关键基因建立诊断模型,该模型在3个独立数据集中均表现出优秀的诊断效能(受试者工作特征曲线中,曲线下面积分别为0.848、0.853、1.000)。免疫浸润分析和单细胞数据集分析结果提示, 3个关键基因与树突状细胞、巨噬细胞和T细胞或B细胞存在显著关联。
结论本研究基于生物信息学手段识别出pSS中与铁死亡相关的3个关键基因(PARP9、PARP12、PARP14)并构建pSS诊断模型,为pSS的诊断提供了新的潜在工具。
Abstract:ObjectiveTo identify iron death-related genes in primary Sjögren's syndrome (pSS) through various bioinformatics methods, providing potential targets for the diagnosis and treatment of pSS.
MethodsGene expression matrix of pSS was obtained from the GEO database, and differentially expressed genes (DEGs) were identified using the "limma" package by R software. Weighted gene co-expression network analysis (WGCNA) was used to identify the most relevant modular genes in pSS. Iron death-related gene sets were obtained from the FerrDb database, and key genes were identified by intersecting the most relevant module genes with DEGs and iron death-related genes. Two machine learning algorithms were used to remove redundant genes and construct a diagnostic model consisting of key genes. The accuracy of the diagnostic model was validated in three independent datasets, and the association between key genes and immune cells was revealed by immune infiltration analysis and single-cell data analysis using the Seurat package.
ResultsA total of 265 DEGs were obtained by differential gene analysis, and the WGCNA algorithm identified a module that was most strongly correlated with pSS (r=0.44, P < 0.01), from which eight iron death-related genes were identified. After removing redundant genes, three key genes related to iron death (PARP9, PARP12, and PARP14) were finally obtained, and a diagnostic model was established based on the three genes. The model exhibited excellent diagnostic performance in three independent datasets (the areas under the receiver operating characteristic curve were 0.848, 0.853 and 1.000, respectively). Immune infiltration analysis and single-cell data analysis revealed significant associations of the three key genes with dendritic cells, macrophages and T/B cells.
ConclusionIn this study, three key genes related to iron death in pSS (PARP9, PARP12, PARP14) are identified based on bioinformatics methods and a diagnostic model of pSS is constructed, providing a new potential tool for the diagnosis of pSS.
-
-
-
[1] MAVRAGANI C P, MOUTSOPOULOS H M. Sjögren's syndrome: old and new therapeutic targets[J]. J Autoimmun, 2020, 110: 102364. doi: 10.1016/j.jaut.2019.102364
[2] KOLB J P, OGUIN T H 3rd, OBERST A, et al. Programmed cell death and inflammation: winter is coming[J]. Trends Immunol, 2017, 38(10): 705-718. doi: 10.1016/j.it.2017.06.009
[3] XIA J J, ZHANG L L, GU T, et al. Identification of ferroptosis related markers by integrated bioinformatics analysis and in vitro model experiments in rheumatoid arthritis[J]. BMC Med Genomics, 2023, 16(1): 18. doi: 10.1186/s12920-023-01445-7
[4] LI P C, JIANG M D, LI K T, et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity[J]. Nat Immunol, 2021, 22(9): 1107-1117. doi: 10.1038/s41590-021-00993-3
[5] MASLINSKA M, KOSTYRA-GRABCZAK K. The role of virus infections in Sjögren's syndrome[J]. Front Immunol, 2022, 13: 823659. doi: 10.3389/fimmu.2022.823659
[6] YU Y, YAN Y, NIU F L, et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases[J]. Cell Death Discov, 2021, 7(1): 193. doi: 10.1038/s41420-021-00579-w
[7] HABIB H M, IBRAHIM S, ZAIM A, et al. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators[J]. Biomedecine Pharmacother, 2021, 136: 111228. doi: 10.1016/j.biopha.2021.111228
[8] OHANYAN H, PORTENGEN L, KAPLANI O, et al. Associations between the urban exposome and type 2 diabetes: results from penalised regression by least absolute shrinkage and selection operator and random forest models[J]. Environ Int, 2022, 170: 107592. doi: 10.1016/j.envint.2022.107592
[9] JONSSON R, BOLSTAD A I, BROKSTAD K A, et al. Sjögren's syndrome: a plethora of clinical and immunological phenotypes with a complex genetic background[J]. Ann N Y Acad Sci, 2007, 1108: 433-447. doi: 10.1196/annals.1422.046
[10] GETTS D R, CHASTAIN E M L, TERRY R L, et al. Virus infection, antiviral immunity, and autoimmunity[J]. Immunol Rev, 2013, 255(1): 197-209. doi: 10.1111/imr.12091
[11] NAGATA Y, INOUE H, YAMADA K, et al. Activation of Epstein-Barr virus by saliva from Sjögren's syndrome patients[J]. Immunology, 2004, 111(2): 223-229. doi: 10.1111/j.0019-2805.2003.01795.x
[12] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. doi: 10.1016/j.cell.2012.03.042
[13] TAN Q Y, FANG Y Y, GU Q. Mechanisms of modulation of ferroptosis and its role in central nervous system diseases[J]. Front Pharmacol, 2021, 12: 657033. doi: 10.3389/fphar.2021.657033
[14] ZHANG C, LIU X Y, JIN S D, et al. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance[J]. Mol Cancer, 2022, 21(1): 47. doi: 10.1186/s12943-022-01530-y
[15] HONG T, LEI G, CHEN X, et al. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer[J]. Redox Biol, 2021, 42: 101928. doi: 10.1016/j.redox.2021.101928
[16] ZHU H, WU L F, MO X B, et al. Rheumatoid arthritis-associated DNA methylation sites in peripheral blood mononuclear cells[J]. Ann Rheum Dis, 2019, 78(1): 36-42. doi: 10.1136/annrheumdis-2018-213970
[17] JIANG Z H, SHAO M T, DAI X Z, et al. Identification of diagnostic biomarkers in systemic lupus erythematosus based on bioinformatics analysis and machine learning[J]. Front Genet, 2022, 13: 865559. doi: 10.3389/fgene.2022.865559
[18] FOULQUIER N, DANTEC C L, BETTACCHIOLI E, et al. Machine learning for the identification of a common signature for anti-SSA/ro 60 antibody expression across autoimmune diseases[J]. Arthritis Rheumatol, 2022, 74(10): 1706-1719. doi: 10.1002/art.42243
[19] BAR-ON L, JUNG S. Defining dendritic cells by conditional and constitutive cell ablation[J]. Immunol Rev, 2010, 234(1): 76-89. doi: 10.1111/j.0105-2896.2009.00875.x
[20] LOPES A P, HILLEN M R, HINRICHS A C, et al. Deciphering the role of cDC2s in Sjögren's syndrome: transcriptomic profile links altered antigen processes with IFN signature and autoimmunity[J]. Ann Rheum Dis, 2023, 82(3): 374-383. doi: 10.1136/ard-2022-222728
[21] MEHROTRA P, RILEY J P, PATEL R, et al. PARP-14 functions as a transcriptional switch for Stat6-dependent gene activation[J]. J Biol Chem, 2011, 286(3): 1767-1776. doi: 10.1074/jbc.M110.157768
[22] GOSWAMI R, JABEEN R, YAGI R, et al. STAT6-dependent regulation of Th9 development[J]. J Immunol, 2012, 188(3): 968-975. doi: 10.4049/jimmunol.1102840
-
期刊类型引用(10)
1. 顾雅秋,沈丹. 人性化护理在外科手术室护理中的效果分析. 名医. 2023(14): 81-83 . 百度学术
2. 王静,孙静,王艳芳. 磁性医院管理理念在心血管外科手术室护理管理中的应用. 中华现代护理杂志. 2022(03): 387-391 . 百度学术
3. 王婷婷,冯文娟. 基于思维导图的无缝隙干预模式在泌尿外科手术室护理中的应用效果及对护理满意度的影响. 临床医学研究与实践. 2022(11): 177-180+184 . 百度学术
4. 曹江涛. 个性化护理服务在手术室患者中的应用. 保健医学研究与实践. 2021(S1): 202-204 . 百度学术
5. 张媛媛. 人性化护理模式在手术室护理中的应用价值评价. 中国继续医学教育. 2020(06): 181-183 . 百度学术
6. 王前前,胡亚平,张林波. 手术室整体护理对甲状腺手术患者的影响研究. 现代医药卫生. 2020(14): 2267-2269 . 百度学术
7. 冯雪玉. 手术室护理干预对结石性胆囊炎合并糖尿病患者的临床价值. 糖尿病新世界. 2020(19): 9-11 . 百度学术
8. 李瑾. 手术室人性化护理服务实施的应用效果分析. 山西医药杂志. 2020(24): 3519-3521 . 百度学术
9. 程宝玉. 舒适性护理应用于老年肺癌患者术中护理效果分析. 现代医学. 2019(12): 1544-1547 . 百度学术
10. 滕文久. 心理护理在手术室患者中的应用效果. 中国民康医学. 2019(23): 151-153 . 百度学术
其他类型引用(0)