Experimental study of plantamajoside in myocardial injury mice with sepsis induced by lipopolysaccharide
-
摘要:目的
探讨大车前苷在小鼠脓毒症心肌损伤中的作用。
方法选取8~10周龄的雄性C57/BL6小鼠40只, 根据处理方式不同将小鼠随机分为4组: 生理盐水+生理盐水组、生理盐水+大车前苷组、脂多糖+生理盐水组、脂多糖+大车前苷组,每组10只。脂多糖+生理盐水组与脂多糖+大车前苷组小鼠接受单次腹腔注射脂多糖(10 mg/kg), 以构建小鼠脓毒症模型; 生理盐水+生理盐水组与生理盐水+大车前苷组小鼠接受同等体积生理盐水腹腔注射。生理盐水+大车前苷组与脂多糖+大车前苷组小鼠给予连续5 d的大车前苷50 mg/(kg·d)灌胃干预,生理盐水+生理盐水组与脂多糖+生理盐水组进行同等体积生理盐水灌胃。实验第1天,先给予小鼠连续5 d大车前苷50 mg/(kg·d)或生理盐水灌胃,第5天给予小鼠单次腹腔注射脂多糖(10 mg/kg)或者等体积生理盐水,饲养12 h后检测心功能并取材。采用实时荧光定量聚合酶链反应检测超氧化物歧化酶2 (SOD-2)、谷胱甘肽过氧化物酶-1 (GPX-1)和过氧化氢酶(CAT)和相关炎症因子[白细胞介素-1β(IL-1β)、白细胞介素-6 (IL-6)、肿瘤坏死因子-α (TNF-α)、单核细胞趋化蛋白-1 (MCP-1)和白细胞介素-4 (IL-4)]的mRNA水平。用检测试剂盒检测丙二醛(MDA)、4-羟基壬烯醛(4-HNE)、GPX-1、TNF-α和MCP-1以及Caspase-3的水平; 检测血液中心肌肌钙蛋白I(cTnI)、乳酸脱氢酶(LDH)水平; 用TUNEL染色检测心肌细胞凋亡水平。
结果与生理盐水+生理盐水组小鼠相比,脂多糖+生理盐水组小鼠的心率、左室射血分数以及左室短轴缩短率降低,心肌损伤标志物cTnI、LDH水平升高,差异有统计学意义(P < 0.05); 大车前苷可恢复小鼠的心率、左室射血分数、左室短轴缩短率,以及降低心肌损伤标志物cTnI和LDH的水平,提高小鼠生存率(P < 0.05)。与脂多糖+生理盐水组小鼠相比,脂多糖+大车前苷组小鼠心脏中MDA、4-HNE的水平降低,差异有统计学意义(P < 0.05)。大车前苷可降低小鼠心脏中炎症因子表达、Caspase-3的活性、细胞凋亡水平(P < 0.05)。
结论大车前苷可以减轻脂多糖诱导的小鼠心肌细胞损伤,改善其心功能。
Abstract:ObjectiveTo investigate the role of plantamajoside in sepsis-related cardiac injury in mice.
MethodsForty male C57/BL6 mice aged 8 to 10 weeks were selected and randomly divided into 4 groups according to different treatment methods: normal saline+normal saline group, normal saline+plantamajoside group, lipopolysaccharide+normal saline group, lipopolysaccharide+plantamajoside group, with 10 mice in each group. Mice in lipopolysaccharide+normal saline group and lipopolysaccharide+plantamajoside group received single intraperitoneal injection of lipopolysaccharide (10 mg/kg) to construct a mouse sepsis model; mice in the normal saline+normal saline group and the normal saline+plantamajoside group received intraperitoneal injection of the same volume of normal saline. The mice in the normal saline+plantamajoside group and the lipopolysaccharide+plantamajoside group were given 50 mg/(kg·d) plantamajoside by gavage intervention for consecutive 5 days, and the mice in the normal saline+normal saline group and the lipopolysaccharide+normal saline group were given gavage with the same volume of normal saline. On the first day of the experiment, the mice were given 50 mg/(kg·d) or normal saline intragastric administration for 5 consecutive days. On the fifth day, mice were given a single intraperitoneal injection of lipopolysaccharide (10 mg/kg) or equal volume of normal saline. After feeding for 12 h, cardiac function was detected and samples were collected. Superoxide dismutase 2 (SOD-2), glutathione peroxidase-1 (GPX-1), catalase (CAT) and related inflammatory factors [interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1) and interleukin-4 (IL-4)] mRNA levels were determined by real-time quantitative fluorescence polymerase chain reaction. The levels of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), GPX-1, TNF-α, MCP-1 and Caspase-3 were determined by the test kit; the serum levels of cardiac troponin I (cTnI) and lactate dehydrogenase (LDH) were detected; the myocardial cell apoptosis was detected by TUNEL staining.
ResultsCompared with normal saline + normal saline group, the heart rate, left ventricular ejection fraction and left ventricular short axis shortening rate of mice in lipopolysaccharide + normal saline group were significantly decreased, and the myocardial injury markers including cTnI and LDH were significantly increased (P < 0.05). Plantamajoside could restore the heart rate, left ventricular ejection fraction, left ventricular short axis shortening rate, reduce the levels of myocardial injury markers including cTnI and LDH, and improve the survival rate of mice (P < 0.05). Compared with the lipopolysaccharide+normal saline group, the levels of MDA and 4-HNE in the heart of mice in lipopolysaccharide+plantamajoside group were significantly decreased (P < 0.05). Plantamajoside could decrease the expression of inflammatory factors, the activity of Caspase-3 and the level of apoptosis in the heart of mice (P < 0.05).
ConclusionPlantamajoside can alleviate myocardial cell damage induced by lipopolysaccharide and improve cardiac function in mice.
-
Keywords:
- plantamajoside /
- sepsis /
- myocardial injury /
- inflammation /
- oxidative stress
-
脓毒症是感染导致的宿主免疫反应失衡引起的临床综合征[1], 在脓毒症期间,许多重要器官均会受累,其中心血管系统是脓毒症常见的损伤系统。脓毒症引起的心肌功能障碍主要表现为左室舒张功能不全和射血分数降低[2]。存在脓毒症心肌损伤的患者病病死率较高[3],因此寻找一种减轻脓毒症期间心肌功能障碍的治疗方法十分重要。大车前苷是传统中药车前草中的活性成分,大车前苷具有多种生物活性,如抗氧化、抗炎、抗凋亡以及抗肿瘤作用[4-6]。既往研究[7]表明,大车前苷可通过组蛋白脱乙酰基酶2(HDAC2)与蛋白激酶B(AKT)途径减轻异丙肾上腺素诱导的小鼠心肌肥厚。但关于大车前苷对于脓毒症心肌损伤的作用尚未阐明,因此,本研究探讨大车前苷在脓毒症心肌损伤中的作用。
1. 材料与方法
1.1 试剂与材料
大车前苷(货号HY-N0031)购于美国MedChemExpress生物科技公司,高效液相色谱法检测其纯度>98%。脂多糖(货号SMB00610)购于美国Sigma公司,该药物用于脓毒症模型的制作; 提取RNA的Trizol试剂(货号15596)购于美国Thermo Scientific公司; 逆转录试剂盒(货号4896866001)以及SYBRGreen I Master(货号4913914001)购自瑞士罗氏公司; ApopTag荧光素原位凋亡检测试剂盒(货号S7110, Millipore)购于Merck公司; 脂质过氧化产物丙二醛(MDA)检测试剂盒(货号A003-1-1)、乳酸脱氢酶(LDH)检测试剂盒(货号A020-2-2)、半胱氨酸天冬氨酸蛋白酶-3(Caspase-3)活性检测试剂盒(货号G015-1)均购于南京建成生物工程研究所。心肌肌钙蛋白I(cTnI)检测试剂盒(货号SEA478Mu)购于武汉优尔生科技股份有限公司。4-羟基壬烯醛(4-HNE)检测试剂盒(货号ab238538)购于美国Abcam公司。小鼠肿瘤坏死因子-α(TNF-α)酶联免疫吸附试验(ELISA)检测试剂盒(货号BMS607-3TEN)、小鼠巨噬细胞趋化蛋白-1(MCP-1)ELISA检测试剂盒(货号BMS6005)购于美国eBioscience公司。
1.2 模型建立与分组
选取8~10周龄的雄性C57/BL6小鼠40只,体质量为23.5~27.5 g, 购自北京华阜康生物科技股份有限公司,饲养于武汉大学实验动物中心,饲养环境为SPF级,恒温、恒湿, 12 h昼夜节律,并可自由饮食。本研究涉及的所有动物实验均通过武汉大学动物伦理委员会批准。小鼠经过适应性喂养1周后,按照随机数字表法分为4组,每组10只,分别为生理盐水+生理盐水组、生理盐水+大车前苷组、脂多糖+生理盐水组、脂多糖+大车前苷组。脂多糖+生理盐水组与脂多糖+大车前苷组小鼠接受单次腹腔注射脂多糖(10 mg/kg)构建小鼠脓毒症模型,生理盐水+生理盐水组与生理盐水+大车前苷组小鼠接受同等体积生理盐水腹腔注射。生理盐水+大车前苷组与脂多糖+大车前苷组小鼠进行连续5 d的大车前苷50 mg/(kg·d)灌胃干预,生理盐水+生理盐水组与脂多糖+生理盐水组进行同等体积生理盐水灌胃。实验第1天,生理盐水+大车前苷组小鼠给予连续5 d的大车前苷50 mg/(kg·d)灌胃干预,生理盐水+生理盐水组进行同等体积生理盐水灌胃。实验开始第1天,生理盐水+大车前苷组小鼠连续5 d灌胃给予大车前苷(50 mg/kg), 生理盐水+生理盐水组小鼠给予同等体积生理盐水灌胃; 灌胃第5天,脂多糖+生理盐水组小鼠给予脂多糖(10 mg/kg)单次腹腔注射,生理盐水+生理盐水组小鼠腹腔注射同体积生理盐水, 12 h后检测心功能并取材。
为研究大车前苷对脓毒症小鼠病死率的影响,另取40只8~10周龄的雄性C57/BL6小鼠,随机分成同样4组,连续进行大车前苷50 mg/(kg·d)或者等体积生理盐水灌胃5 d, 灌胃第5天单次腹腔注射10 mg/kg脂多糖或者等体积生理盐水后,继续饲养7 d, 并记录小鼠死亡情况。
1.3 心功能检测及取材
小鼠脂多糖腹腔注射12 h后, 2.5%异氟烷吸入麻醉后,胸前区备皮下进行心脏超声检查,利用Vevo 2100小鼠超声仪评估小鼠心功能情况。心功能指标包括左室射血分数和左室短轴缩短率。超声期间,小鼠置于37 ℃的恒温垫上,超声期间避免用力压迫小鼠胸腔,以免影响小鼠正常心率。完成检测后处死小鼠并收集血液、心脏标本,用于生化和病理检测。
1.4 组织TUNEL染色
将小鼠心脏组织石蜡切片脱蜡、水合后,按照ApopTag荧光素原位凋亡检测试剂盒(货号S7110, Millipore)说明书进行检测,最后用DAPI封片后即可在OlympusDX51荧光显微镜下观察细胞凋亡的阳性信号。
1.5 实时荧光定量聚合酶链反应
取左心室组织样本,用TRIzol裂解液研磨裂解后提取总RNA, 再利用Nanodrop 2000测定所提RNA纯度并计算含量,然后利用Transcriptor cDNA Synth Kit逆转录试剂盒反转录成cDNA, 利用SYBRGreen I Master进行目的基因[过氧化物歧化酶2(SOD-2)、谷胱甘肽氧化酶1(GPX-1)、过氧化氢酶(CAT)、白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、TNF-α、MCP-1、白细胞介素-4(IL-4)]的表达检测。GAPDH为内参基因。引物序列见表 1。
表 1 相关指标引物序列引物名称 上游引物5′- 3′ 下游引物5′- 3′ SOD-2 CAGACCTGCCTTACGACTATGG CTCGGTGGCGTTGAGATTGTT GPX-1 AGTCCACCGTGTATGCCTTCT GAGACGCGACATTCTCAATGA CAT AGCGACCAGATGAAGCAGTG TCCGCTCTCTGTCAAAGTGTG IL -1β GCAACTGTTCCTGAACTCAACT ATCTTTTGGGGTCCGTCAACT IL -6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC TNF-α CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACAG MCP-1 TTAAAAACCTGGATCGGAACCAA GCATTAGCTTCAGATTTACGGGT IL-4 GGTCTCAACCCCCAGCTAGT GCCGATGATCTCTCTCAAGTGAT GAPDH AGGTCGGTGTGAACGGATTTG AGGTCGGTGTGAACGGATTTG 1.6 生化检测
获得血液标本静置30 min后,以12 000转/min离心15 min后,取上清,然后利用cTnI、LDH试剂盒检测上清中cTnI以及LDH水平。取50 mg新鲜左心室组织利用匀浆液充分匀浆后,以12 000转/min离心10 min后,取上清,利用MDA试剂盒、4-HNE试剂盒、TNF-α检测试剂盒、MCP-1检测试剂盒以及Caspase-3活性检测试剂盒检测相关因子的表达或者活性。
1.7 统计学分析
采用SPSS 25.0统计软件进行数据分析。所有数据均采用(x±s)表述; 小鼠生存率采用Kaplan-Meier法检验。多组间样本比较采用单因素方差分析,组间比较采用Tukey检测。P < 0.05为差异有统计学意义。
2. 结果
2.1 各组小鼠心功能和心肌损伤比较
脂多糖+生理盐水组小鼠的左室射血分数、左室短轴缩短率以及心率低于生理盐水+生理盐水组,差异有统计学意义(P < 0.05), 见图 1; 脂多糖腹腔注射后可以导致60%的小鼠死亡,大车前苷治疗后(脂多糖+大车前苷组)可提高脓毒症小鼠存活率,差异有统计学意义(P < 0.05),见图 1。脂多糖+生理盐水组小鼠的cTnI和LDH水平高于生理盐水+生理盐水组小鼠,差异有统计学意义(P < 0.05); 大车前苷处理(脂多糖+大车前苷组)小鼠的cTnI、LDH表达水平低于脂多糖+生理盐水组,差异有统计学意义(P < 0.05), 见图 2。
2.2 各组小鼠心脏氧化应激情况比较
脂多糖+生理盐水组的小鼠MDA、4-HNE水平高于生理盐水+生理盐水组小鼠,差异有统计学意义(P < 0.05); 与脂多糖+生理盐水组小鼠相比,大车前苷处理(脂多糖+大车前苷组)可以降低心脏中由脂多糖诱导产生的MDA和4-HNE的水平,差异有统计学意义(P < 0.05), 见图 3。与生理盐水+生理盐水组小鼠相比,脂多糖+生理盐水组小鼠心脏中的SOD-2、GPX-1以及CAT mRNA水平降低,经过大车前苷处理后,脂多糖导致的SOD-2、GPX-1以及CAT mRNA的低表达水平得到恢复,差异有统计学意义(P < 0.05), 见图 4。
2.3 各组小鼠心脏炎症情况比较
与生理盐水+生理盐水组相比,脂多糖可以明显诱导小鼠心脏中TNF-α和MCP-1的表达上调(P < 0.05), 经过大车前苷处理后, TNF-α和MCP-1的表达水平降低,差异有统计学意义(P < 0.05, 图 5)。与生理盐水+生理盐水组小鼠相比,脂多糖导致小鼠心脏中IL-1、IL-6、TNF-α、MCP-1以及IL-4的mRNA表达水平升高,差异有统计学意义(P < 0.05), 与脂多糖+生理盐水组小鼠相比,大车前苷可以降低脂多糖诱导上调的IL-1、IL-6、TNF-α、MCP-1以及IL-4的mRNA水平,差异有统计学意义(P < 0.05, 图 6)。
2.4 各组小鼠心肌细胞凋亡情况比较
与生理盐水+生理盐水组的小鼠相比,脂多糖+生理盐水组小鼠心脏中Caspase-3活性上调,差异有统计学意义(P < 0.05); 大车前苷处理(脂多糖+大车前苷组)可以降低脂多糖(脂多糖+生理盐水组)诱导增加的Caspase-3活性,差异有统计学意义(P < 0.05)。TUNEL染色显示,与生理盐水+生理盐水组相比,脂多糖+生理盐水组小鼠的心肌细胞凋亡水平上调,差异有统计学意义(P < 0.05); 大车前苷处理(脂多糖+大车前苷组)可以降低脂多糖(脂多糖+生理盐水组)诱导的心肌细胞凋亡水平,差异有统计学意义(P < 0.05),见图 7。
3. 讨论
心肌损伤导致的心肌功能障碍是脓毒症所致多器官功能衰竭的严重并发症之一。研究[8-9]报道, 20%~60%的脓毒症患者有脓毒症相关心肌损伤和心功能不全,并且病死率显著高于未合并心肌损伤的患者[10]。脓毒症休克是导致脓毒症相关多器官功能障碍的始发因素,心血管功能障碍与脓毒症休克的发生密切相关。目前,脓毒症休克的治疗方式以抗生素治疗和支持治疗为主。因此,寻找减轻脓毒症心肌损伤、减少脓毒症休克发生的新疗法具有重要意义。
大车前苷是从车前草中分离的活性成分,属于苯丙苷类糖苷。大车前苷具有明显抗炎作用,大车前苷可以抑制脂多糖诱导的上皮间充质转化(EMT); 大车前苷还能抑制诱导的人气道上皮细胞的炎症反应和急性肺损伤[11-12]。此外,大车前苷具有显著的抗氧化应激和抗凋亡作用[13-14]。本研究结果与上述研究一致,大车前苷可以显著减少炎症因子的产生,显著降低心脏氧化应激水平、心肌损伤标志物水平和减少心肌细胞凋亡,显著改善小鼠的心功能。
脓毒症相关的心肌损伤与心肌功能障碍的发生涉及多种机制,包括炎症反应、氧化应激损伤、线粒体功能障碍以及凋亡等[15-17]。在脓毒症的病理过程中,机体免疫系统会产生大量的炎症因子,这些炎性细胞因子导致心肌周围中性粒细胞的浸润,损害β-肾上腺素能信号传导,扰乱能量代谢,使钙稳态失衡并刺激一氧化氮(NO)过量产生,最终会导致心肌损伤和心肌收缩力受损[18-19]。除免疫细胞外,心肌细胞本身也会在脂多糖刺激下产生IL-1β和TNF-α等炎症因子[19]。这些细胞因子相互作用形成正反馈回路,导致炎症反应和心功能不全持续恶化。研究[20-21]表明,抑制炎症反应可以改善脓毒症引起的心肌损伤。既往研究[11, 13, 22]发现,大车前苷可减轻炎症反应,发挥对脂多糖诱导的急性肺损伤、气道上皮细胞损伤以及高糖诱导的肾小球系膜细胞损伤保护作用。本研究发现,大车前苷可以抑制脂多糖诱导的心肌损伤模型中TNF-α、MCP-1、IL-1、IL-4以及IL-6相关炎症因子的转录水平,从而发挥抗炎作用,减轻脂多糖对心肌的损伤。
氧化应激是多种病理状态包括感染性疾病中的关键过程。研究[23-24]证明,氧化应激可能也是脓毒症发病的核心过程。脓毒症中活性氧(ROS)产生的关键部位是活化的中性粒细胞以及巨噬细胞。在整个炎症过程中,这些细胞浸润并释放出大量的反应性物质[25]。多器官功能障碍综合征是患有严重脓毒症患者最严重的结果,其中细胞凋亡和坏死是介导器官衰竭的主要参与者,氧化应激介导的线粒体通透性过渡孔(MPTP)的开放是其中的关键环节,可导致细胞凋亡和坏死的下游途径激活,细胞发生死亡,进而导致器官衰竭[26]。本研究发现,大车前苷可以在mRNA水平上恢复脂多糖导致降低的SOD-2、GPX-1以及CAT的表达,并且在心脏组织中检测到MDA和4-HNE水平的降低。此外,大车前苷减轻了心肌细胞的凋亡,表现为Caspase-3的活性显著降低, TUNEL染色细胞阳性率显著降低。
综上所述,大车前苷可以减轻脂多糖诱导的小鼠心肌细胞损伤,改善心功能。这可能与大车前苷抑制脂多糖所致的炎症、氧化应激以及凋亡相关,但具体的作用机制仍需进一步验证。
-
表 1 相关指标引物序列
引物名称 上游引物5′- 3′ 下游引物5′- 3′ SOD-2 CAGACCTGCCTTACGACTATGG CTCGGTGGCGTTGAGATTGTT GPX-1 AGTCCACCGTGTATGCCTTCT GAGACGCGACATTCTCAATGA CAT AGCGACCAGATGAAGCAGTG TCCGCTCTCTGTCAAAGTGTG IL -1β GCAACTGTTCCTGAACTCAACT ATCTTTTGGGGTCCGTCAACT IL -6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC TNF-α CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACAG MCP-1 TTAAAAACCTGGATCGGAACCAA GCATTAGCTTCAGATTTACGGGT IL-4 GGTCTCAACCCCCAGCTAGT GCCGATGATCTCTCTCAAGTGAT GAPDH AGGTCGGTGTGAACGGATTTG AGGTCGGTGTGAACGGATTTG -
[1] EVANS L, RHODES A, ALHAZZANI W, et al. Executive summary: surviving Sepsis campaign: international guidelines for the management of Sepsis and septic shock 2021[J]. Crit Care Med, 2021, 49(11): 1974-1982. doi: 10.1097/CCM.0000000000005357
[2] RAVIKUMAR N, SAYED M A, POONSUPH C J, et al. Septic cardiomyopathy: from basics to management choices[J]. Curr Probl Cardiol, 2021, 46(4): 100767. doi: 10.1016/j.cpcardiol.2020.100767
[3] HOLLENBERG S M, SINGER M. Pathophysiology of sepsis-induced cardiomyopathy[J]. Nat Rev Cardiol, 2021, 18(6): 424-434. doi: 10.1038/s41569-020-00492-2
[4] SUN Q, GENG F, CHENG X M, et al. Qualitative and quantitative analysis of plantamajoside in Plantaginis Herba[J]. China J Chin Mater Med, 2010, 35(16): 2095-2098. http://europepmc.org/abstract/med/21046737
[5] BAI L Z, HAN L, LU X G, et al. UHPLC-MS/MS determination and pharmacokinetic study of plantamajoside in rat plasma after oral administration of single plantamajoside and Plantago asiatica extract[J]. Biomed Chromatogr, 2017, 31(5): 1-7.
[6] LI Y J, GAN L, LI G Q, et al. Pharmacokinetics of plantamajoside and acteoside from Plantago asiatica in rats by liquid chromatography-mass spectrometry[J]. J Pharm Biomed Anal, 2014, 89: 251-256. doi: 10.1016/j.jpba.2013.11.014
[7] SHANG L L, PIN L, ZHU S S, et al. Plantamajoside attenuates isoproterenol-induced cardiac hypertrophy associated with the HDAC2 and AKT/GSK-3β signaling pathway[J]. Chem Biol Interact, 2019, 307: 21-28. doi: 10.1016/j.cbi.2019.04.024
[8] CHARPENTIER J, LUYT C E, FULLA Y, et al. Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis[J]. Crit Care Med, 2004, 32(3): 660-665. doi: 10.1097/01.CCM.0000114827.93410.D8
[9] VIEILLARD-BARON A, CAILLE V, CHARRON C, et al. Actual incidence of global left ventricular hypokinesia in adult septic shock[J]. Crit Care Med, 2008, 36(6): 1701-1706. doi: 10.1097/CCM.0b013e318174db05
[10] JEONG H S, LEE T H, BANG C H, et al. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock: a comparative retrospective study[J]. Medicine, 2018, 97(13): e0263. doi: 10.1097/MD.0000000000010263
[11] WU H C, ZHAO G, JIANG K F, et al. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation[J]. Int Immunopharmacol, 2016, 35: 315-322. doi: 10.1016/j.intimp.2016.04.013
[12] LI X H, CHEN D, LI M F, et al. Plantamajoside inhibits lipopolysaccharide-induced epithelial-mesenchymal transition through suppressing the NF-κB/IL-6 signaling in esophageal squamous cell carcinoma cells[J]. Biomedecine Pharmacother, 2018, 102: 1045-1051. doi: 10.1016/j.biopha.2018.03.171
[13] XIAO D M, YANG R, GONG L, et al. Plantamajoside inhibits high glucose-induced oxidative stress, inflammation, and extracellular matrix accumulation in rat glomerular mesangial cells through the inactivation of Akt/NF-κB pathway[J]. J Recept Signal Transduct Res, 2021, 41(1): 45-52. doi: 10.1080/10799893.2020.1784939
[14] WANG Z, ZUO J L, ZHANG L L, et al. Plantamajoside promotes metformin-induced apoptosis, autophagy and proliferation arrest of liver cancer cells via suppressing Akt/GSK3β signaling[J]. Hum Exp Toxicol, 2022, 41: 9603271221078868.
[15] CIMOLAI M C, ALVAREZ S, BODE C, et al. Mitochondrial mechanisms in septic cardiomyopathy[J]. Int J Mol Sci, 2015, 16(8): 17763-17778. doi: 10.3390/ijms160817763
[16] ESSANDOH K, YANG L W, WANG X H, et al. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction[J]. Biochim Biophys Acta, 2015, 1852(11): 2362-2371. doi: 10.1016/j.bbadis.2015.08.010
[17] NERI M, RIEZZO I, POMARA C, et al. Oxidative-nitrosative stress and myocardial dysfunctions in Sepsis: evidence from the literature and postmortem observations[J]. Mediators Inflamm, 2016, 2016: 3423450. http://www.xueshufan.com/publication/2346389387
[18] OKUHARA Y, YOKOE S, IWASAKU T, et al. Interleukin-18 gene deletion protects against sepsis-induced cardiac dysfunction by inhibiting PP2A activity[J]. Int J Cardiol, 2017, 243: 396-403. doi: 10.1016/j.ijcard.2017.04.082
[19] MAYNARD K, PARSONS P G, CERNY T, et al. Relationships among cell survival, O6-alkylguanine-DNA alkyltransferase activity, and reactivation of methylated adenovirus 5 and Herpes simplex virus type 1 in human melanoma cell lines[J]. Cancer Res, 1989, 49(17): 4813-4817. http://pubmed.ncbi.nlm.nih.gov/2547518/
[20] ZHANG N, FENG H, LIAO H H, et al. Myricetin attenuated LPS induced cardiac injury in vivo and in vitro[J]. Phytother Res, 2018, 32(3): 459-470. doi: 10.1002/ptr.5989
[21] YANG L, ZHANG H, CHEN P L. Sulfur dioxide attenuates sepsis-induced cardiac dysfunction via inhibition of NLRP3 inflammasome activation in rats[J]. Nitric Oxide, 2018, 81: 11-20. doi: 10.1016/j.niox.2018.09.005
[22] MA C N, MA W. Plantamajoside inhibits lipopolysaccharide-induced MUC5AC expression and inflammation through suppressing the PI3K/akt and NF-κB signaling pathways in human airway epithelial cells[J]. Inflammation, 2018, 41(3): 795-802. doi: 10.1007/s10753-018-0733-7
[23] SUN J, ZHANG J X, TIAN J K, et al. Mitochondria in Sepsis-induced AKI[J]. J Am Soc Nephrol, 2019, 30(7): 1151-1161. doi: 10.1681/ASN.2018111126
[24] MANTZARLIS K, TSOLAKI V, ZAKYNTHINOS E. Role of oxidative stress and mitochondrial dysfunction in Sepsis and potential therapies[J]. Oxid Med Cell Longev, 2017, 2017: 5985209. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585571/pdf/OMCL2017-5985209.pdf
[25] MEO S D, REED T T, VENDITTI P, et al. Role of ROS and RNS sources in physiological and pathological conditions[J]. Oxid Med Cell Longev, 2016, 2016: 1245049. http://downloads.hindawi.com/journals/omcl/2016/1245049.pdf
[26] KUMAR S, SAXENA J, SRIVASTAVA V K, et al. The interplay of oxidative stress and ROS scavenging: antioxidants as a therapeutic potential in Sepsis[J]. Vaccines, 2022, 10(10): 1575. doi: 10.3390/vaccines10101575