Experimental study of plantamajoside in myocardial injury mice with sepsis induced by lipopolysaccharide
-
摘要:目的
探讨大车前苷在小鼠脓毒症心肌损伤中的作用。
方法选取8~10周龄的雄性C57/BL6小鼠40只, 根据处理方式不同将小鼠随机分为4组: 生理盐水+生理盐水组、生理盐水+大车前苷组、脂多糖+生理盐水组、脂多糖+大车前苷组,每组10只。脂多糖+生理盐水组与脂多糖+大车前苷组小鼠接受单次腹腔注射脂多糖(10 mg/kg), 以构建小鼠脓毒症模型; 生理盐水+生理盐水组与生理盐水+大车前苷组小鼠接受同等体积生理盐水腹腔注射。生理盐水+大车前苷组与脂多糖+大车前苷组小鼠给予连续5 d的大车前苷50 mg/(kg·d)灌胃干预,生理盐水+生理盐水组与脂多糖+生理盐水组进行同等体积生理盐水灌胃。实验第1天,先给予小鼠连续5 d大车前苷50 mg/(kg·d)或生理盐水灌胃,第5天给予小鼠单次腹腔注射脂多糖(10 mg/kg)或者等体积生理盐水,饲养12 h后检测心功能并取材。采用实时荧光定量聚合酶链反应检测超氧化物歧化酶2 (SOD-2)、谷胱甘肽过氧化物酶-1 (GPX-1)和过氧化氢酶(CAT)和相关炎症因子[白细胞介素-1β(IL-1β)、白细胞介素-6 (IL-6)、肿瘤坏死因子-α (TNF-α)、单核细胞趋化蛋白-1 (MCP-1)和白细胞介素-4 (IL-4)]的mRNA水平。用检测试剂盒检测丙二醛(MDA)、4-羟基壬烯醛(4-HNE)、GPX-1、TNF-α和MCP-1以及Caspase-3的水平; 检测血液中心肌肌钙蛋白I(cTnI)、乳酸脱氢酶(LDH)水平; 用TUNEL染色检测心肌细胞凋亡水平。
结果与生理盐水+生理盐水组小鼠相比,脂多糖+生理盐水组小鼠的心率、左室射血分数以及左室短轴缩短率降低,心肌损伤标志物cTnI、LDH水平升高,差异有统计学意义(P < 0.05); 大车前苷可恢复小鼠的心率、左室射血分数、左室短轴缩短率,以及降低心肌损伤标志物cTnI和LDH的水平,提高小鼠生存率(P < 0.05)。与脂多糖+生理盐水组小鼠相比,脂多糖+大车前苷组小鼠心脏中MDA、4-HNE的水平降低,差异有统计学意义(P < 0.05)。大车前苷可降低小鼠心脏中炎症因子表达、Caspase-3的活性、细胞凋亡水平(P < 0.05)。
结论大车前苷可以减轻脂多糖诱导的小鼠心肌细胞损伤,改善其心功能。
Abstract:ObjectiveTo investigate the role of plantamajoside in sepsis-related cardiac injury in mice.
MethodsForty male C57/BL6 mice aged 8 to 10 weeks were selected and randomly divided into 4 groups according to different treatment methods: normal saline+normal saline group, normal saline+plantamajoside group, lipopolysaccharide+normal saline group, lipopolysaccharide+plantamajoside group, with 10 mice in each group. Mice in lipopolysaccharide+normal saline group and lipopolysaccharide+plantamajoside group received single intraperitoneal injection of lipopolysaccharide (10 mg/kg) to construct a mouse sepsis model; mice in the normal saline+normal saline group and the normal saline+plantamajoside group received intraperitoneal injection of the same volume of normal saline. The mice in the normal saline+plantamajoside group and the lipopolysaccharide+plantamajoside group were given 50 mg/(kg·d) plantamajoside by gavage intervention for consecutive 5 days, and the mice in the normal saline+normal saline group and the lipopolysaccharide+normal saline group were given gavage with the same volume of normal saline. On the first day of the experiment, the mice were given 50 mg/(kg·d) or normal saline intragastric administration for 5 consecutive days. On the fifth day, mice were given a single intraperitoneal injection of lipopolysaccharide (10 mg/kg) or equal volume of normal saline. After feeding for 12 h, cardiac function was detected and samples were collected. Superoxide dismutase 2 (SOD-2), glutathione peroxidase-1 (GPX-1), catalase (CAT) and related inflammatory factors [interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1) and interleukin-4 (IL-4)] mRNA levels were determined by real-time quantitative fluorescence polymerase chain reaction. The levels of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), GPX-1, TNF-α, MCP-1 and Caspase-3 were determined by the test kit; the serum levels of cardiac troponin I (cTnI) and lactate dehydrogenase (LDH) were detected; the myocardial cell apoptosis was detected by TUNEL staining.
ResultsCompared with normal saline + normal saline group, the heart rate, left ventricular ejection fraction and left ventricular short axis shortening rate of mice in lipopolysaccharide + normal saline group were significantly decreased, and the myocardial injury markers including cTnI and LDH were significantly increased (P < 0.05). Plantamajoside could restore the heart rate, left ventricular ejection fraction, left ventricular short axis shortening rate, reduce the levels of myocardial injury markers including cTnI and LDH, and improve the survival rate of mice (P < 0.05). Compared with the lipopolysaccharide+normal saline group, the levels of MDA and 4-HNE in the heart of mice in lipopolysaccharide+plantamajoside group were significantly decreased (P < 0.05). Plantamajoside could decrease the expression of inflammatory factors, the activity of Caspase-3 and the level of apoptosis in the heart of mice (P < 0.05).
ConclusionPlantamajoside can alleviate myocardial cell damage induced by lipopolysaccharide and improve cardiac function in mice.
-
Keywords:
- plantamajoside /
- sepsis /
- myocardial injury /
- inflammation /
- oxidative stress
-
-
表 1 相关指标引物序列
引物名称 上游引物5′- 3′ 下游引物5′- 3′ SOD-2 CAGACCTGCCTTACGACTATGG CTCGGTGGCGTTGAGATTGTT GPX-1 AGTCCACCGTGTATGCCTTCT GAGACGCGACATTCTCAATGA CAT AGCGACCAGATGAAGCAGTG TCCGCTCTCTGTCAAAGTGTG IL -1β GCAACTGTTCCTGAACTCAACT ATCTTTTGGGGTCCGTCAACT IL -6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC TNF-α CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACAG MCP-1 TTAAAAACCTGGATCGGAACCAA GCATTAGCTTCAGATTTACGGGT IL-4 GGTCTCAACCCCCAGCTAGT GCCGATGATCTCTCTCAAGTGAT GAPDH AGGTCGGTGTGAACGGATTTG AGGTCGGTGTGAACGGATTTG -
[1] EVANS L, RHODES A, ALHAZZANI W, et al. Executive summary: surviving Sepsis campaign: international guidelines for the management of Sepsis and septic shock 2021[J]. Crit Care Med, 2021, 49(11): 1974-1982. doi: 10.1097/CCM.0000000000005357
[2] RAVIKUMAR N, SAYED M A, POONSUPH C J, et al. Septic cardiomyopathy: from basics to management choices[J]. Curr Probl Cardiol, 2021, 46(4): 100767. doi: 10.1016/j.cpcardiol.2020.100767
[3] HOLLENBERG S M, SINGER M. Pathophysiology of sepsis-induced cardiomyopathy[J]. Nat Rev Cardiol, 2021, 18(6): 424-434. doi: 10.1038/s41569-020-00492-2
[4] SUN Q, GENG F, CHENG X M, et al. Qualitative and quantitative analysis of plantamajoside in Plantaginis Herba[J]. China J Chin Mater Med, 2010, 35(16): 2095-2098. http://europepmc.org/abstract/med/21046737
[5] BAI L Z, HAN L, LU X G, et al. UHPLC-MS/MS determination and pharmacokinetic study of plantamajoside in rat plasma after oral administration of single plantamajoside and Plantago asiatica extract[J]. Biomed Chromatogr, 2017, 31(5): 1-7.
[6] LI Y J, GAN L, LI G Q, et al. Pharmacokinetics of plantamajoside and acteoside from Plantago asiatica in rats by liquid chromatography-mass spectrometry[J]. J Pharm Biomed Anal, 2014, 89: 251-256. doi: 10.1016/j.jpba.2013.11.014
[7] SHANG L L, PIN L, ZHU S S, et al. Plantamajoside attenuates isoproterenol-induced cardiac hypertrophy associated with the HDAC2 and AKT/GSK-3β signaling pathway[J]. Chem Biol Interact, 2019, 307: 21-28. doi: 10.1016/j.cbi.2019.04.024
[8] CHARPENTIER J, LUYT C E, FULLA Y, et al. Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis[J]. Crit Care Med, 2004, 32(3): 660-665. doi: 10.1097/01.CCM.0000114827.93410.D8
[9] VIEILLARD-BARON A, CAILLE V, CHARRON C, et al. Actual incidence of global left ventricular hypokinesia in adult septic shock[J]. Crit Care Med, 2008, 36(6): 1701-1706. doi: 10.1097/CCM.0b013e318174db05
[10] JEONG H S, LEE T H, BANG C H, et al. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock: a comparative retrospective study[J]. Medicine, 2018, 97(13): e0263. doi: 10.1097/MD.0000000000010263
[11] WU H C, ZHAO G, JIANG K F, et al. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation[J]. Int Immunopharmacol, 2016, 35: 315-322. doi: 10.1016/j.intimp.2016.04.013
[12] LI X H, CHEN D, LI M F, et al. Plantamajoside inhibits lipopolysaccharide-induced epithelial-mesenchymal transition through suppressing the NF-κB/IL-6 signaling in esophageal squamous cell carcinoma cells[J]. Biomedecine Pharmacother, 2018, 102: 1045-1051. doi: 10.1016/j.biopha.2018.03.171
[13] XIAO D M, YANG R, GONG L, et al. Plantamajoside inhibits high glucose-induced oxidative stress, inflammation, and extracellular matrix accumulation in rat glomerular mesangial cells through the inactivation of Akt/NF-κB pathway[J]. J Recept Signal Transduct Res, 2021, 41(1): 45-52. doi: 10.1080/10799893.2020.1784939
[14] WANG Z, ZUO J L, ZHANG L L, et al. Plantamajoside promotes metformin-induced apoptosis, autophagy and proliferation arrest of liver cancer cells via suppressing Akt/GSK3β signaling[J]. Hum Exp Toxicol, 2022, 41: 9603271221078868.
[15] CIMOLAI M C, ALVAREZ S, BODE C, et al. Mitochondrial mechanisms in septic cardiomyopathy[J]. Int J Mol Sci, 2015, 16(8): 17763-17778. doi: 10.3390/ijms160817763
[16] ESSANDOH K, YANG L W, WANG X H, et al. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction[J]. Biochim Biophys Acta, 2015, 1852(11): 2362-2371. doi: 10.1016/j.bbadis.2015.08.010
[17] NERI M, RIEZZO I, POMARA C, et al. Oxidative-nitrosative stress and myocardial dysfunctions in Sepsis: evidence from the literature and postmortem observations[J]. Mediators Inflamm, 2016, 2016: 3423450. http://www.xueshufan.com/publication/2346389387
[18] OKUHARA Y, YOKOE S, IWASAKU T, et al. Interleukin-18 gene deletion protects against sepsis-induced cardiac dysfunction by inhibiting PP2A activity[J]. Int J Cardiol, 2017, 243: 396-403. doi: 10.1016/j.ijcard.2017.04.082
[19] MAYNARD K, PARSONS P G, CERNY T, et al. Relationships among cell survival, O6-alkylguanine-DNA alkyltransferase activity, and reactivation of methylated adenovirus 5 and Herpes simplex virus type 1 in human melanoma cell lines[J]. Cancer Res, 1989, 49(17): 4813-4817. http://pubmed.ncbi.nlm.nih.gov/2547518/
[20] ZHANG N, FENG H, LIAO H H, et al. Myricetin attenuated LPS induced cardiac injury in vivo and in vitro[J]. Phytother Res, 2018, 32(3): 459-470. doi: 10.1002/ptr.5989
[21] YANG L, ZHANG H, CHEN P L. Sulfur dioxide attenuates sepsis-induced cardiac dysfunction via inhibition of NLRP3 inflammasome activation in rats[J]. Nitric Oxide, 2018, 81: 11-20. doi: 10.1016/j.niox.2018.09.005
[22] MA C N, MA W. Plantamajoside inhibits lipopolysaccharide-induced MUC5AC expression and inflammation through suppressing the PI3K/akt and NF-κB signaling pathways in human airway epithelial cells[J]. Inflammation, 2018, 41(3): 795-802. doi: 10.1007/s10753-018-0733-7
[23] SUN J, ZHANG J X, TIAN J K, et al. Mitochondria in Sepsis-induced AKI[J]. J Am Soc Nephrol, 2019, 30(7): 1151-1161. doi: 10.1681/ASN.2018111126
[24] MANTZARLIS K, TSOLAKI V, ZAKYNTHINOS E. Role of oxidative stress and mitochondrial dysfunction in Sepsis and potential therapies[J]. Oxid Med Cell Longev, 2017, 2017: 5985209. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585571/pdf/OMCL2017-5985209.pdf
[25] MEO S D, REED T T, VENDITTI P, et al. Role of ROS and RNS sources in physiological and pathological conditions[J]. Oxid Med Cell Longev, 2016, 2016: 1245049. http://downloads.hindawi.com/journals/omcl/2016/1245049.pdf
[26] KUMAR S, SAXENA J, SRIVASTAVA V K, et al. The interplay of oxidative stress and ROS scavenging: antioxidants as a therapeutic potential in Sepsis[J]. Vaccines, 2022, 10(10): 1575. doi: 10.3390/vaccines10101575
-
期刊类型引用(8)
1. 章洪斌,肖志龙,郝楼,李坤. 苯妥英钠联合丙戊酸钠对难治性癫痫患者的效果分析. 医学理论与实践. 2025(01): 59-61 . 百度学术
2. 贺婕,康妍,吴建楠,贺敏. 成人病毒性脑炎血清和脑脊液GFAP、CPK-BB、NSE、S-100B表达及与病情、预后关系研究. 河北医科大学学报. 2024(02): 196-201 . 百度学术
3. 石恒瑜,刘丽琴. 小儿危重病例评分 视频脑电图联合神经元特异性烯醇化酶对小儿重症病毒性脑炎预后的评估价值. 基层医学论坛. 2024(10): 102-104 . 百度学术
4. 吴留拴,邢文峰,吕丰超,胡慧杰. 针灸辅治病毒性脑炎临床观察. 实用中医药杂志. 2024(06): 1142-1145 . 百度学术
5. 许诣,秦建品,钱丹,沈文婷. 病毒性脑炎患儿血清高迁移率族蛋白-1与神经损伤和炎症反应的相关性研究. 中国现代医学杂志. 2023(02): 89-93 . 百度学术
6. 饶丽梦,韩静. 菖蒲郁金汤辅助治疗对重症病毒性脑炎的中医证候、神经功能及炎症因子的影响. 四川中医. 2023(02): 91-94 . 百度学术
7. 董艳松. 血清尿酸、5-羟色胺、髓鞘碱性蛋白水平对精神分裂症的诊断价值. 中国民康医学. 2023(18): 149-151+155 . 百度学术
8. 缪亚秀,柯进,戴其军. 菖蒲郁金汤治疗病毒性脑炎. 中医学报. 2021(02): 414-419 . 百度学术
其他类型引用(0)