Research progress on prevention and treatment of Helicobacter pylori neutrophil-activating protein related diseases
-
摘要:
幽门螺杆菌(H. pylori)中性粒细胞激活蛋白(HP-NAP)是新近发现的H. pylori的主要毒力因子之一, 几乎所有H. pylori菌株都有表达。HP-NAP被激活后,可刺激中性粒细胞、单核细胞、树突状细胞、肥大细胞和淋巴细胞,参与炎症的发展和组织损伤。本文对HP-NAP在相关疾病的预防、治疗中的最新研究进展予以综述。
-
关键词:
- 幽门螺杆菌中性粒细胞激活蛋白 /
- 菌株 /
- 中性粒细胞 /
- 疫苗
Abstract:Helicobacter pylori (H. pylori) neutrophil-activating protein (HP-NAP) is one of the newly discovered main virulence factors of H. pylori, and is expressed in almost all strains of H. pylori. After being activated, HP-NAP can participate in the development of inflammation and tissue damage by stimulating neutrophils, monocytes, dendritic cells, mast cells and lymphocytes. This paper reviewed the latest research progress of HP-NAP in the prevention and treatment of related diseases.
-
Keywords:
- Helicobacter pylori neutrophil-activating protein /
- strain /
- neutrophils /
- vaccines
-
慢性阻塞性肺疾病急性加重期(AECOPD)患者病情较为严重,体内多种炎性细胞被激活,大量释放出白介素-8(IL-8)、肿瘤坏死因子-α(TNF-α)等多种炎症因子,导致机体慢性炎症及气道炎症反应加重[1-3]。本研究探讨抗血小板治疗AECOPD患者的疗效,现报告如下。
1. 资料与方法
1.1 一般资料
选取本院2015年5月—2018年5月收治的AECOPD患者80例,随机分为观察组与对照组,每组40例。对照组男22例,女18例,年龄60~78岁,平均(68.20±3.40)岁; 观察组男21例,女19例,年龄60~79岁,平均(68.40±3.30)岁。所有患者均符合慢性阻塞性肺疾病(COPD)诊断指南中的相关诊断标准[4-5], 且伴有呼吸系统恶化症状。排除标准:伴有恶性肿瘤及血液系统疾病者;伴有糖尿病、严重肝肾功能不全者;伴有免疫系统疾病者;近1个月内有手术及出血情况者;近2周内使用过抗血小板及抗凝药物治疗者。
1.2 方法
对照组患者给予常规方法治疗,包含支气管扩张剂、低流量吸氧、祛痰剂及抗生素抗感染等治疗。观察组在对照组基础上给予100 mg阿司匹林肠溶片(德国拜耳医药保健有限公司,批准文号J20130078)口服治疗, 1次/d。2组患者均治疗14 d。
1.3 观察指标
① 检测并比较2组患者治疗前后IL-8、TNF-α及超敏C反应蛋白(hs-CRP)等炎症因子水平。检测方法: 清晨抽取患者空腹静脉血,置入离心机内,以3 000转/min离心10 min, 取上层血清保存于-80 ℃环境中,采用酶联免疫吸附法检测各项指标。②检测并比较2组患者治疗前后用力肺活量(FVC)、第1秒用力呼气容积(FEV1)、第1秒用力呼气容积与用力肺活量比值(FEV1/FVC)等指标。检测方法: 采用Profiler肺功能测试系统(美国麦加菲公司)检测FVC、FEV1、FEV1/FVC等指标。③采用改良英国医学研究理事会[6-9]呼吸困难指数(mMRC)对呼吸困难进行评价。1级: 患者爬小坡或快走时出现呼吸困难,计1分; 2级: 患者行走一段距离或因气促而行走速度缓慢需停下休息,计2分; 3级: 患者步行几分钟或平路行走100 m需停下喘气,计3分; 4级: 患者日常穿衣脱衣出现呼吸困难症状或呼吸困难明显而无法外出,计4分。按照上述标准对2组患者进行评分,计算并比较mMRC。
1.4 统计学分析
采用SPSS 19.0统计软件处理数据,计量资料采用均数±标准差表示,比较行t检验, P<0.05为差异有统计学意义。
2. 结果
2.1 2组治疗前后炎症因子水平对比
治疗前, 2组IL-8、hs-CRP及TNF-α水平比较无显著差异(P>0.05); 治疗后, 2组各指标水平均显著低于治疗前(P<0.05), 且观察组各指标水平均显著低于对照组(P<0.05), 见表 1。
表 1 2组治疗前后炎症因子水平比较(x±s)组别 时点 IL-8/(pg/mL) hs-CRP/(mg/L) TNF-α/(pg/mL) 观察组(n=40) 治疗前 34.62±8.07 23.83±1.31 65.63±8.92 治疗后 16.41±5.24*# 12.55±0.51*# 34.41±6.12*# 对照组(n=40) 治疗前 33.97±8.11 24.02±1.29 64.87±8.97 治疗后 21.63±6.52* 17.42±0.86* 45.83±7.57* IL-8: 白介素-8; TNF-α: 肿瘤坏死因子-α; hs-CRP: 超敏C反应蛋白。与治疗前比较, *P<0.05; 与对照组比较, #P<0.05。 2.2 2组治疗前后肺功能及呼吸功能指标比较
治疗前, 2组FVC、FEV1、FEV1/FVC及mMRC等指标比较无显著差异(P>0.05); 治疗后, 2组FVC、FEV1、FEV1/FVC指标水平均显著高于治疗前, mMRC水平显著低于治疗前(P<0.05), 且观察组治疗后FVC、FEV1、FEV1/FVC指标水平均显著高于对照组, mMRC水平显著低于对照组(P<0.05), 见表 2。
表 2 2组治疗前后肺功能及呼吸功能指标比较(x±s)组别 时点 FVC/L FEV1/L (FEV1/FVC)/% mMRC/分 观察组(n=40) 治疗前 2.03±0.19 1.31±0.26 50.36±3.52 1.83±0.32 治疗后 2.22±0.37*# 1.52±0.57*# 55.89±5.28*# 1.31±0.18*# 对照组(n=40) 治疗前 2.02±0.21 1.34±0.25 50.29±3.56 1.84±0.36 治疗后 2.14±0.29* 1.42±0.36* 52.87±4.27* 1.65±0.26* FVC: 用力肺活量; FEV1: 第1秒用力呼气容积; FEV1/FVC: 第1秒用力呼气容积与用力肺活量比值; mMRC: 呼吸困难指数。与治疗前比较, *P<0.05; 与对照组比较, #P<0.05。 3. 讨论
慢性阻塞性肺疾病属于常见的慢性呼吸系统疾病,具有发病率高、致死率高等特征,在该病发展过程中,炎症反应有重要作用[10-11]。张晓宁等[12]研究表明, AECOPD患者血小板活化明显。研究[13]显示,采用抗血小板药物治疗AECOPD患者能够显著降低病死率,在炎症及调控中性粒细胞生物学功能中,血小板有驱动作用。对于COPD患者而言,因其气道存在持续慢性炎症,血小板在急性加重期炎症反应中有驱动作用[14]。因此,在AECOPD患者治疗中,抗血小板治疗是有效的方法之一。
本研究观察组在常规治疗的基础上应用抗血小板药物辅助治疗,结果显示观察组患者IL-8、hs-CRP及TNF-α等炎症因子水平显著低于对照组(P<0.05), 表明抗血小板药物在改善AECOPD患者炎症反应方面具有较好的效果。在肺功能及呼吸功能方面,观察组治疗后改善效果也显著优于对照组(P<0.05)。抗血小板治疗在AECOPD患者中的优势可能与以下因素有关: ① AECOPD患者因慢性缺氧导致血液黏稠度增高、继发性红细胞增多及血液流速减慢,对血小板活化有刺激作用[15]; ②肺泡破裂在AECOPD患者中多发,对血小板活化也有刺激作用[16]; ③急性感染期患者体内内毒素对凝血酶有激活作用,单核巨噬细胞可将大量血小板因子释放出来,血小板活化加剧。血小板活化后,可释放血栓素A2、血小板激活因子、血小板源性生长因子、血小板因子4及氧自由基等炎性介质,上述各种释放因子均会不同程度地加重组织损伤,进一步加重机体炎症反应,导致COPD症状加重[17-18]。因此,抗血小板药物的使用对释放的血小板炎性因子有抑制效果,能减轻机体炎症反应,缓解AECOPD患者病情。
-
[1] ZANOTTI G, PAPINUTTO E, DUNDON W, et al. Structure of the neutrophil-activating protein from Helicobacter pylori[J]. J Mol Biol, 2002, 323(1): 125-130. doi: 10.1016/S0022-2836(02)00879-3
[2] YOKOYAMA H, FUJII S. Structures and metal-binding properties of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center[J]. Biomolecules, 2014, 4(3): 600-615. doi: 10.3390/biom4030600
[3] BAJ J, FORMA A, SITARZ M, et al. Helicobacter pylori virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment[J]. Cells, 2020, 10(1): 27. doi: 10.3390/cells10010027
[4] HU W B, SPAINK H P. The role of TLR2 in infectious diseases caused by mycobacteria: from cell biology to therapeutic target[J]. Biology, 2022, 11(2): 246. doi: 10.3390/biology11020246
[5] WEN S H, HONG Z W, CHEN C C, et al. Helicobacter pylori neutrophil-activating protein directly interacts with and activates toll-like receptor 2 to induce the secretion of interleukin-8 from neutrophils and ATRA-induced differentiated HL-60 cells[J]. Int J Mol Sci, 2021, 22(21): 11560. doi: 10.3390/ijms222111560
[6] CODOLO G, COLETTA S, D'ELIOS M M, et al. HP-NAP of Helicobacter pylori: the power of the immunomodulation[J]. Front Immunol, 2022, 13: 944139. doi: 10.3389/fimmu.2022.944139
[7] FU H W, LAI Y C. The role of Helicobacter pylori neutrophil-activating protein in the pathogenesis of H. pylori and beyond: from a virulence factor to therapeutic targets and therapeutic agents[J]. Int J Mol Sci, 2022, 24(1): 91. doi: 10.3390/ijms24010091
[8] JIN C, MA J, RAMACHANDRAN M, et al. CAR T cells expressing a bacterial virulence factor trigger potent bystander antitumour responses in solid cancers[J]. Nat Biomed Eng, 2022, 6(7): 830-841. doi: 10.1038/s41551-022-00875-5
[9] SATIN B, DEL GIUDICE G, DELLA BIANCA V, et al. The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor[J]. J Exp Med, 2000, 191(9): 1467-1476. doi: 10.1084/jem.191.9.1467
[10] CHOLI-PAPADOPOULOU T, KOTTAKIS F, PAPADOPOULOS G, et al. Helicobacter pylori neutrophil activating protein as target for new drugs against H. pylori inflammation[J]. World J Gastroenterol, 2011, 17(21): 2585-2591. doi: 10.3748/wjg.v17.i21.2585
[11] CODOLO G, FACCHINELLO N, PAPA N, et al. Macrophage-mediated melanoma reduction after HP-NAP treatment in a zebrafish xenograft model[J]. Int J Mol Sci, 2022, 23(3): 1644. doi: 10.3390/ijms23031644
[12] HOU M L, WANG X D, LU J K, et al. TLR agonist rHP-NAP as an adjuvant of dendritic cell-based vaccine to enhance anti-melanoma response[J]. Iran J Immunol, 2020, 17(1): 14-25.
[13] MOHABATI MOBAREZ A, SOLEIMANI N, ESMAEILI S A, et al. Nanoparticle-based immunotherapy of breast cancer using recombinant Helicobacter pylori proteins[J]. Eur J Pharm Biopharm, 2020, 155: 69-76. doi: 10.1016/j.ejpb.2020.08.013
[14] DING C, LI L, ZHANG Y, et al. Toll-like receptor agonist rMBP-NAP enhances antitumor cytokines production and CTL activity of peripheral blood mononuclear cells from patients with lung cancer[J]. Oncol Lett, 2018, 16(4): 4707-4712.
[15] WANG T, DU M X, JI Z Y, et al. Recombinant protein rMBP-NAP restricts tumor progression by triggering antitumor immunity in mouse metastatic lung cancer[J]. Can J Physiol Pharmacol, 2018, 96(2): 113-119. doi: 10.1139/cjpp-2017-0186
[16] VIKER K B, STEELE M B, IANKOV I D, et al. Preclinical safety assessment of MV-s-NAP, a novel oncolytic measles virus strain armed with an H. pylori immunostimulatory bacterial transgene[J]. Mol Ther Methods Clin Dev, 2022, 26: 532-546. doi: 10.1016/j.omtm.2022.07.014
[17] PANAGIOTI E, KUROKAWA C, VIKER K, et al. Immunostimulatory bacterial antigen-armed oncolytic measles virotherapy significantly increases the potency of anti-PD1 checkpoint therapy[J]. J Clin Invest, 2021, 131(13): e141614. doi: 10.1172/JCI141614
[18] MA J, JIN C, ĈANĈER M, et al. Concurrent expression of HP-NAP enhances antitumor efficacy of oncolytic vaccinia virus but not for Semliki Forest virus[J]. Mol Ther Oncolytics, 2021, 21: 356-366. doi: 10.1016/j.omto.2021.04.016
[19] MAI J L, LIANG B S, XIONG Z L, et al. Oral administration of recombinant Bacillus subtilis spores expressing Helicobacter pylori neutrophil-activating protein suppresses peanut allergy via up-regulation of Tregs[J]. Clin Exp Allergy, 2019, 49(12): 1605-1614. doi: 10.1111/cea.13489
[20] DONG H, HUANG Y M, YAO S W, et al. The recombinant fusion protein of cholera toxin B and neutrophil-activating protein expressed on Bacillus subtilis spore surface suppresses allergic inflammation in mice[J]. Appl Microbiol Biotechnol, 2017, 101(14): 5819-5829. doi: 10.1007/s00253-017-8370-x
[21] ZHANG K, MIRZA W A, NI P, et al. Recombination Lactococcus lactis expressing Helicobacter pylori neutrophil-activating protein A attenuates food allergy symptoms in mice[J]. FEMS Microbiol Lett, 2021, 368(6): fnab034. doi: 10.1093/femsle/fnab034
[22] GUO X, DING C, LU J K, et al. HP-NAP ameliorates OXA-induced atopic dermatitis symptoms in mice[J]. Immunopharmacol Immunotoxicol, 2020, 42(5): 416-422. doi: 10.1080/08923973.2020.1806869
[23] ZHENG H, KANG Q Z, ZHANG C L, et al. rMBP-NAP suppresses OXA-induced allergic dermatitis by regulating the Th1/Th2 balance[J]. Iran J Immunol, 2023, 20(1): 36-44.
[24] LIU M Y, ZHONG Y X, CHEN J, et al. Oral immunization of mice with a multivalent therapeutic subunit vaccine protects against Helicobacter pylori infection[J]. Vaccine, 2020, 38(14): 3031-3041. doi: 10.1016/j.vaccine.2020.02.036
[25] GUO L, HONG D T, WANG S E, et al. Therapeutic protection against H. pylori infection in Mongolian gerbils by oral immunization with a tetravalent epitope-based vaccine with polysaccharide adjuvant[J]. Front Immunol, 2019, 10: 1185. doi: 10.3389/fimmu.2019.01185
[26] PENG X Y, ZHANG R G, DUAN G C, et al. Production and delivery of Helicobacter pylori NapA in Lactococcus lactis and its protective efficacy and immune modulatory activity[J]. Sci Rep, 2018, 8(1): 6435. doi: 10.1038/s41598-018-24879-x
[27] GHASEMI A, WANG S F, SAHAY B, et al. Protective immunity enhanced Salmonella vaccine vectors delivering Helicobacter pylori antigens reduce H. pylori stomach colonization in mice[J]. Front Immunol, 2022, 13: 1034683. doi: 10.3389/fimmu.2022.1034683
[28] CHEN J, ZHONG Y X, LIU Y, et al. Parenteral immunization with a cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) adjuvanted Helicobacter pylori vaccine induces protective immunity against H. pylori infection in mice[J]. Hum Vaccin Immunother, 2020, 16(11): 2849-2854. doi: 10.1080/21645515.2020.1744364
[29] ZHAO Y C, CAI Y Y, CHEN Z H, et al. SpoT-mediated NapA upregulation promotes oxidative stress-induced Helicobacter pylori biofilm formation and confers multidrug resistance[J]. Antimicrob Agents Chemother, 2023, 65(5): e00152-e00121.
-
期刊类型引用(4)
1. 洪达. 抗血小板治疗对老年AECOPD患者的控制效果. 中国卫生工程学. 2022(01): 133-134 . 百度学术
2. 刘思杰,孙伟,王晶,张黎明. 影响慢性阻塞性肺疾病急性加重合并呼吸衰竭患者短期预后的危险因素探讨. 国际呼吸杂志. 2022(24): 1902-1908 . 百度学术
3. 赵洁敏,左万里,黄志贞. 抗血小板治疗对高龄COPD急性加重期患者疗效及TNF-α、hs-CRP水平的影响. 航空航天医学杂志. 2021(05): 545-547 . 百度学术
4. 李锋,何成,付蓉. 福多司坦对老年慢性阻塞性肺疾病急性加重期肺功能及呼出气一氧化氮的影响. 上海医药. 2020(16): 19-21 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 101
- HTML全文浏览量: 27
- PDF下载量: 12
- 被引次数: 4