Effect of silent information regulator 1 on type Ⅱ alveolar epithelial cell injury in lipopolysaccharide-induced rats
-
摘要:目的
探讨沉默调节蛋白1(SIRT1)在脂多糖(LPS)诱导的大鼠Ⅱ型肺泡上皮细胞损伤中的作用及机制。
方法分离大鼠原代Ⅱ型肺泡上皮细胞, 并分为对照组、模型组和实验组。模型组和实验组分别用空白和SIRT1 shRNA慢病毒感染后, 再加入LPS诱导细胞损伤。采用实时荧光定量聚合酶链式反应(PCR)和Western blot检测SIRT1的表达; 采用CCK-8实验检测细胞活力; 采用实时荧光定量PCR和酶联免疫吸附测定(ELISA)检测肿瘤坏死因子-α(TNF-α)和白细胞介素-1β(IL-1β)的表达; 采用JC-1染色法检测线粒体膜电位; 采用化学显色法检测细胞丙二醛(MDA)水平和超氧化物歧化酶(SOD)活性。
结果与对照组相比, 模型组Ⅱ型肺泡上皮细胞SIRT1 mRNA和蛋白表达水平升高, 细胞活力下降, 促炎因子TNF-α和IL-1β的mRNA表达水平和分泌水平升高, 线粒体膜电位下降, MDA水平升高, SOD活性下降, 差异均有统计学意义(P < 0.05)。与模型组相比, 实验组Ⅱ型肺泡上皮细胞SIRT1 mRNA和蛋白表达水平下降, 细胞活力升高, 促炎因子TNF-α和IL-1β的mRNA表达水平和分泌水平下降, 线粒体膜电位升高, MDA水平下降, SOD活性升高, 差异均有统计学意义(P < 0.05)。
结论SIRT1通过影响线粒体活性和细胞氧化还原稳态促进LPS诱导的Ⅱ型肺泡上皮细胞损伤。
Abstract:ObjectiveTo investigate the role and mechanism of silent information regulator 1 (SIRT1) on type Ⅱ alveolar epithelial cell injury in lipopolysaccharide (LPS) induced rats.
MethodsPrimary type Ⅱ alveolar epithelial cells were isolated from rats and divided into control group, model group and experimental group. Model group and experimental group were infected with blank and SIRT1 shRNA lentivirus respectively, and then LPS was added to induce cell injury. The expression of SIRT1 was detected by real-time quantitative polymerase chain reaction (PCR) and Western blot; the cell viability was detected by CCK-8 assay; the expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected by real-time quantitative PCR and enzyme-linked immunosorbent assay (ELISA); the mitochondrial membrane potential was detected by JC-1 staining assay; the level of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were detected by chemical chromogenic assay.
ResultsCompared with the control group, SIRT1 mRNA and protein expression levels of type Ⅱ alveolar epithelial cells in the model group increased significantly, cell viability decreased significantly, mRNA expression levels and secretion levels of pro-inflammatory factors such as TNF-α and IL-1β increased significantly, mitochondrial membrane potential decreased significantly, MDA level increased significantly, and SOD activity decreased significantly (P < 0.05). Compared with the model group, SIRT1 mRNA and protein expression levels of type Ⅱ alveolar epithelial cells in the experimental group decreased significantly, cell viability increased significantly, mRNA expression levels and secretion levels of pro-inflammatory factors such as TNF-α and IL-1β decreased significantly, mitochondrial membrane potential increased significantly, MDA level decreased significantly, and SOD activity increased significantly (P < 0.05).
ConclusionSIRT1 can promote LPS-induced type Ⅱ alveolar epithelial cell injury by affecting mitochondrial activity and cell redox homeostasis.
-
-
表 1 3组细胞培养基中TNF-α及IL-1β水平比较(x±s)
pg/mL 组别 TNF-α IL-1β 对照组 1 377.69±242.75 89.76±10.31 模型组 5 893.24±496.12* 372.63±38.55* 实验组 3 974.26±400.11# 284.67±21.39# TNF-α: 肿瘤坏死因子-α; IL-1β: 白细胞介素-1β。
与对照组比较, *P < 0.05; 与模型组比较, #P < 0.05。表 3 3组细胞MDA、SOD水平比较(x±s)
组别 MDA/(nmol/mL) SOD/(U/mL) 对照组 27.34±5.62 19.62±3.98 模型组 56.87±8.44* 8.07±2.16* 实验组 39.85±6.03# 14.55±2.52# MDA: 丙二醛; SOD: 超氧化物歧化酶。
与对照组比较, *P < 0.05; 与模型组比较, #P < 0.05。 -
[1] YIN P, WU J Y, WANG L J, et al. The burden of COPD in China and its provinces: findings from the global burden of disease study 2019[J]. Front Public Health, 2022, 10: 859499. doi: 10.3389/fpubh.2022.859499
[2] RITCHIE A I, WEDZICHA J A. Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations[J]. Clin Chest Med, 2020, 41(3): 421-438. doi: 10.1016/j.ccm.2020.06.007
[3] YU H J, LIN Y N, ZHONG Y, et al. Impaired AT2 to AT1 cell transition in PM2.5-induced mouse model of chronic obstructive pulmonary disease[J]. Respir Res, 2022, 23(1): 70. doi: 10.1186/s12931-022-01996-w
[4] OKUTOMO K, FUJINO N, YAMADA M, et al. Increased LHX9 expression in alveolar epithelial type 2cells of patients with chronic obstructive pulmonary disease[J]. Respir Investig, 2022, 60(1): 119-128. doi: 10.1016/j.resinv.2021.08.007
[5] HE M, ICHINOSE T, YOSHIDA S, et al. PM2.5-induced lung inflammation in mice: differences of inflammatory response in macrophages and type Ⅱ alveolar cells[J]. J Appl Toxicol, 2017, 37(10): 1203-1218. doi: 10.1002/jat.3482
[6] YANG Y S, LIU Y, WANG Y W, et al. Regulation of SIRT1 and its roles in inflammation[J]. Front Immunol, 2022, 13: 831168. doi: 10.3389/fimmu.2022.831168
[7] LIANG J R, HUANG G L, LIU X, et al. The ZIP8/SIRT1 axis regulates alveolar progenitor cell renewal in aging and idiopathic pulmonary fibrosis[J]. J Clin Invest, 2022, 132(11): e157338. doi: 10.1172/JCI157338
[8] ZHOU J W, CHEN H Y, WANG Q Y, et al. Sirt1 overexpression improves senescence-associated pulmonary fibrosis induced by vitamin D deficiency through downregulating IL-11 transcription[J]. Aging Cell, 2022, 21(8): e13680. doi: 10.1111/acel.13680
[9] WU L Y, WANG G X, QU P, et al. Overexpression of dominant negative peroxisome proliferator-activated receptor-γ (PPARγ) in alveolar type Ⅱ epithelial cells causes inflammation and T-cell suppression in the lung[J]. Am J Pathol, 2011, 178(5): 2191-2204. doi: 10.1016/j.ajpath.2011.01.046
[10] BRIGHTLING C, GREENING N. Airway inflammation in COPD: progress to precision medicine[J]. Eur Respir J, 2019, 54(2): 1900651. doi: 10.1183/13993003.00651-2019
[11] CUTOLO M, CAMPITIELLO R, GOTELLI E, et al. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis[J]. Front Immunol, 2022, 13: 867260. doi: 10.3389/fimmu.2022.867260
[12] JU M J, LIU B F, HE H Y, et al. microRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway[J]. Cell Cycle, 2018, 17(16): 2001-2018. doi: 10.1080/15384101.2018.1509635
[13] SAKAMURU S, ATTENE-RAMOS M S, XIA M H. Mitochondrial membrane potential assay[J]. Methods Mol Biol, 2016, 1473: 17-22.
[14] ZAIB S, HAYYAT A, ALI, et al. Role of mitochondrial membrane potential and lactate dehydrogenase A in apoptosis[J]. Anticancer Agents Med Chem, 2022, 22(11): 2048-2062. doi: 10.2174/1871520621666211126090906
[15] TSIKAS D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges[J]. Anal Biochem, 2017, 524: 13-30. doi: 10.1016/j.ab.2016.10.021
[16] DING G, HUA H W, LIU H D, et al. The tumor suppressor protein menin inhibits NF-κB-mediated transactivation through recruitment of Sirt1 in hepatocellular carcinoma[J]. Mol Biol Rep, 2013, 40(3): 2461-2466. doi: 10.1007/s11033-012-2326-0