Expression of programmed death receptor ligand 1 in B cells and B cell subsets of patients with type 1 diabetes mellitus
-
摘要:目的
探讨1型糖尿病(T1DM)患者循环B细胞中程序性死亡受体配体1(PD-L1)的表达情况。
方法采集健康对照者(n=25)和T1DM患者(n=25)的外周血标本。流式细胞术检测B细胞及其表面PD-L1的表达。
结果T1DM患者B细胞亚群频率与健康对照者比较, 差异无统计学意义(P>0.05)。与健康对照者相比, T1DM患者CD19+细胞、CD19+CD27+细胞和CD19+CD27+细胞上PD-L1的表达降低, 差异有统计学意义(P<0.05)。健康对照者与T1DM患者的PD-L1在B10细胞、边缘区B细胞(MZB)和滤泡B细胞(FoB)上的表达比较,差异无统计学意义(P>0.05)。T1DM患者的PD-L1在过渡性T2-边缘区前体B细胞(T2-MZP)上的表达低于健康对照者,差异有统计学意义(P<0.05)。
结论PD-L1在T1DM发病中可能起保护作用。PD-L1高表达的B细胞可能为自身免疫性糖尿病患者的治疗提供新策略。
-
关键词:
- 1型糖尿病 /
- 程序性死亡受体配体1 /
- B细胞 /
- 流式细胞术
Abstract:ObjectiveTo investigate the expression of programmed death receptor ligand 1 (PD-L1) in circulating B cells of patients with type 1 diabetes mellitus (T1DM).
MethodsPeripheral blood samples were collected from healthy controls (n=25) and T1DM patients (n=25). The expression of PD-L1 on B cells and their surfaces was detected by flow cytometry.
ResultsThere was no significant difference in the frequency of B cell subsets between the T1DM patients and healthy controls (P>0.05). Compared with healthy controls, the expression of PD-L1 on CD19+ cells, CD19+CD27+ cells and CD19+CD27+ cells in the T1DM patients was significantly decreased (P < 0.05). There was no significant difference in the expression of PD-L1 in B10 cells, marginal zone B cells (MZB) and follicular B cells (FoB) between healthy controls and T1DM patients (P>0.05). The expression of PD-L1 on transitional 2-marginal zone precursor B cells (T2-MZP) cells in the T1DM patients was lower than that in the healthy controls (P < 0.05).
ConclusionThe PD-L1 may play a protective role in the pathogenesis of T1DM. B cells with high expression of PD-L1 may provide a new strategy for the treatment of patients with autoimmune diabetes.
-
-
表 1 T1DM患者临床特征(n=25)(x±s)[M(IQR)]
临床特征 数值 女性例数 12 胰岛自身抗体阳性例数 18 病程*/年 4.00(6.00) 高密度脂蛋白/(mmol/L) 1.54±0.68 低密度脂蛋白/(mmol/L) 2.61±1.01 胆固醇/(mmol/L) 4.42±1.43 甘油三酯*/(mmol/L) 0.77(0.57) 丙氨酸氨基转移酶/(U/L) 18.28±15.03 天冬氨酸转移酶/(U/L) 17.84±8.15 肌酐/(μmol/L) 56.04±14.19 尿素/(mmol/L) 4.88±1.53 尿酸/(μmol/L) 254.00±97.49 空腹血糖/(mmol/L) 9.80±4.85 空腹c肽*/(ng/mL) 0.08(0.34) 糖化血红蛋白/% 8.28±2.59 尿微量白蛋白肌酐比*/(mg/g) 11.45(12.50) *数据以中位数(四分位数间距)表示。 表 2 B细胞亚群PD-L1水平与临床特征之间的相关性
指标 CD19+CD27+ CD19+CD27- B10 MZB FoB T2-MZP 女性 0.061 0.178 0.308 -0.233 -0.033 -0.044 胰岛自身抗体 0.259 0.080 0.178 0.074 0.321 0.012 病程 -0.114 0.196 -0.080 0.078 -0.138 -0.12 高密度脂蛋白 -0.31 0.024 0.287 0.101 -0.23 0.033 4 低密度脂蛋白 -0.062 -0.007 -0.133 -0.124 -0.477 -0.384 胆固醇 -0.042 -0.047 0.021 -0.075 -0.316 -0.163 甘油三酯 -0.011 0.115 0.022 -0.192 -0.325 -0.227 丙氨酸氨基转移酶 -0.017 0.128 0.095 -0.138 -0.296 -0.311 天冬氨酸转移酶 -0.067 0.156 0.11 -0.211 -0.333 -0.317 肌酐 0.097 0.022 -0.17 0.339 0.145 0.019 尿素 0.166 0.129 -0.108 0.619 0.138 0.199 尿酸 0.161 -0.089 -0.045 0.122 0.055 -0.125 空腹血糖 -0.017 -0.068 0.225 -0.188 0.273 0.048 空腹c肽 -0.041 -0.214 -0.212 0.320 0.330 0.214 糖化血红蛋白 -0.093 -0.130 -0.326 -0.259 0.104 -0.149 尿微量白蛋白肌酐比 -0.219 -0.335 0.109 -0.218 -0.120 -0.229 MZB: 边缘区B细胞; FoB: 滤泡B细胞; T2-MZP: 过渡性T2-边缘区前体B细胞。 -
[1] TODD J A. Etiology of type 1 diabetes[J]. Immunity, 2010, 32(4): 457-467. doi: 10.1016/j.immuni.2010.04.001
[2] PESCOVITZ M D, GREENBAUM C J, BUNDY B, et al. B-lymphocyte depletion with rituximab and β-cell function: two-year results[J]. Diabetes Care, 2014, 37(2): 453-459. doi: 10.2337/dc13-0626
[3] KLINKER M W, LUNDY S K. Multiple mechanisms of immune suppression by B lymphocytes[J]. Mol Med, 2012, 18(1): 123-137. doi: 10.2119/molmed.2011.00333
[4] GULERIA I, GUBBELS BUPP M, DADA S, et al. Mechanisms of PDL1-mediated regulation of autoimmune diabetes[J]. Clin Immunol, 2007, 125(1): 16-25. doi: 10.1016/j.clim.2007.05.013
[5] CHEN X H, GUO H M, LI S C, et al. Soluble programmed death-1 ligand 1(sPD-L1) is significantly reduced in the serum of type 1 diabetes patients[J]. Acta Diabetol, 2018, 55(5): 515-517. doi: 10.1007/s00592-017-1081-z
[6] HANLEY P, SUTTER J A, GOODMAN N G, et al. Circulating B cells in type 1 diabetics exhibit fewer maturation-associated phenotypes[J]. Clin Immunol, 2017, 183: 336-343. doi: 10.1016/j.clim.2017.09.021
[7] BECK R W, TAMBORLANE W V, BERGENSTAL R M, et al. The T1D Exchange clinic registry[J]. J Clin Endocrinol Metab, 2012, 97(12): 4383-4389. doi: 10.1210/jc.2012-1561
[8] SERREZE D V, SILVEIRA P A. The role of B lymphocytes as key antigen-presenting cells in the development of T cell-mediated autoimmune type 1 diabetes[M]//Current Directions in Autoimmunity. Basel: KARGER, 2002: 212-227. [9] DENG C, XIANG Y F, TAN T T, et al. The imbalance of B-lymphocyte subsets in subjects with different glucose tolerance: relationship with metabolic parameter and disease status[J]. J Diabetes Res, 2017, 2017: 5052812.
[10] FUJISAWA R, HASEDA F, TSUTSUMI C, et al. Low programmed cell death-1 (PD-1) expression in peripheral CD4(+) T cells in Japanese patients with autoimmune type 1 diabetes[J]. Clin Exp Immunol, 2015, 180(3): 452-457. doi: 10.1111/cei.12603
[11] GAUCI M L, LALY P, VIDAL-TRECAN T, et al. Autoimmune diabetes induced by PD-1 inhibitor-retrospective analysis and pathogenesis: a case report and literature review[J]. Cancer Immunol Immunother, 2017, 66(11): 1399-1410. doi: 10.1007/s00262-017-2033-8
[12] SERREZE D V, CHAPMAN H D, VARNUM D S, et al. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new "speed congenic" stock of NOD. Ig mu null mice[J]. J Exp Med, 1996, 184(5): 2049-2053. doi: 10.1084/jem.184.5.2049
[13] JEONG Y I, HONG S H, CHO S H, et al. Induction of IL-10-producing CD1dhighCD5+ regulatory B cells following Babesia microti-infection[J]. PLoS One, 2012, 7(10): e46553. doi: 10.1371/journal.pone.0046553
[14] ATTANAVANICH K, KEARNEY J. Marginal zone, but not follicular B cells, are potent activators of naive CD4 T Cells1[J]. J Immunol, 2004, 172: 803-811. doi: 10.4049/jimmunol.172.2.803
[15] THIBULT M L, MAMESSIER E, GERTNER-DARDENNE J, et al. PD-1 is a novel regulator of human B-cell activation[J]. Int Immunol, 2013, 25(2): 129-137. doi: 10.1093/intimm/dxs098
[16] BODHANKAR S, GALIPEAU D, VANDENBARK A, et al. PD-1 interaction with PD-L1 but not PD-L2 on B-cells mediates protective effects of estrogen against EAE[J]. Journal of Clinical & Cellular Immunology, 2013, 4(3): 143.
[17] KHAN A R, HAMS E, FLOUDAS A, et al. PD-L1hi B cells are critical regulators of humoral immunity[J]. Nat Commun, 2015, 6: 5997. doi: 10.1038/ncomms6997
[18] TANGYE S G, AVERY D T, HODGKIN P D. A division-linked mechanism for the rapid generation of ig-secreting cells from human memory B cells[J]. J Immunol, 2003, 170(1): 261-269. doi: 10.4049/jimmunol.170.1.261
[19] TANGYE S G, LIU Y J, AVERSA G, et al. Identification of functional human splenic memory B cells by expression of CD148 and CD27[J]. J Exp Med, 1998, 188(9): 1691-1703. doi: 10.1084/jem.188.9.1691
[20] GOOD K L, AVERY D, TANGYE S. Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B Cells1[J]. J Immunol, 2009, 182: 890-901. doi: 10.4049/jimmunol.182.2.890
[21] YANG M, RUI K, WANG S J, et al. Regulatory B cells in autoimmune diseases[J]. Cell Mol Immunol, 2013, 10(2): 122-132. doi: 10.1038/cmi.2012.60
[22] EVANS J G, CHAVEZ-RUEDA K A, EDDAOUDI A, et al. Novel suppressive function of transitional 2 B cells in experimental arthritis[J]. J Immunol, 2007, 178(12): 7868-7878. doi: 10.4049/jimmunol.178.12.7868
[23] GRAY M, MILES K, SALTER D, et al. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells[J]. Proc Natl Acad Sci U S A, 2007, 104(35): 14080-14085. doi: 10.1073/pnas.0700326104
[24] MENART-HOUTERMANS B, RVTTER R, NOWOTNY B, et al. Leukocyte profiles differ between type 1 and type 2 diabetes and are associated with metabolic phenotypes: results from the German Diabetes Study (GDS)[J]. Diabetes Care, 2014, 37(8): 2326-2333. doi: 10.2337/dc14-0316