Correlation between corneal biomechanical parameters and aberrations in patients with myopia
-
摘要:目的
探讨近视患者角膜生物力学参数与全眼像差、角膜前表面像差的相关性。
方法选取95例(190眼)近视患者作为研究对象, 测量全眼像差、角膜前表面像差,记录总像差均方根(RMS)、总高阶像差均方根(RMSh),测量角膜生物力学参数[中央角膜厚度(CCT)、眼内压(IOP)、校正Goldman眼压(IOPg)、角膜补偿眼压(IOPcc)、角膜黏滞阻力(CH)、角膜阻力因子(CRF)]。比较不同近视程度患者的角膜生物力学参数和总RMS、总RMSh, 采用Pearson相关分析法分析角膜生物力学参数与全眼、角膜前表面高阶像差(彗差、球差)的相关性。
结果95例患者左眼、右眼的角膜前表面像差(总RMS、总RMSh)均大于全眼像差,差异有统计学意义(P < 0.05); 高度近视患者全眼、角膜前表面的总RMS均高于中度、低度近视患者,且中度近视患者高于低度近视患者,差异有统计学意义(P < 0.05)。相关性分析结果显示, IOP与低度、中度近视患者的全眼和角膜前表面球差均呈强正相关(P < 0.01), 与高度近视患者的全眼球差呈强正相关(P < 0.01); IOPg与低度、中度、高度近视患者的全眼球差均呈强正相关(P < 0.01), 与中度近视患者的角膜前表面球差呈强正相关(P < 0.01); IOPcc与低度、中度近视患者的全眼球差呈正相关(P < 0.05); CRF、CH均分别与低度、中度近视患者的全眼和角膜前表面球差呈正相关(P < 0.05), 与高度近视患者的全眼球差呈正相关(P < 0.05)。
结论近视患者的全眼像差通常小于角膜前表面像差, IOP、IOPg、IOPcc均与全眼球差存在相关性,且低度近视患者角膜生物力学参数与高阶像差的相关性强于中度、高度近视患者。
Abstract:ObjectiveTo investigate the correlation of corneal biomechanical parameters with ocular aberrations as well as corneal anterior surface aberrations in patients with myopia.
MethodsA total of 95 patients (190 eyes) with myopia were selected as study subjects. Ocular aberrations and corneal anterior surface aberrations were measured, and the total root mean square (RMS) and root mean square of high order aberration(RMSh) were recorded. Corneal biomechanical parameters, including central corneal thickness (CCT), intraocular pressure (IOP), Goldmann-correlated IOP (IOPg), corneal-compensated intraocular pressure (IOPcc), corneal hysteresis (CH), and corneal resistance factor (CRF) were also measured. The corneal biomechanical parameters, total RMS, and total RMSh were compared among patients with different degrees of myopia. Pearson correlation analysis was used to assess the correlations of corneal biomechanical parameters with ocular and corneal anterior surface high-order aberrations (coma and spherical aberration).
ResultsThe corneal anterior surface aberrations (total RMS and total RMSh) in both left and right eyes of the 95 patients were greater than the ocular aberrations(P < 0.05). The total RMS of both the ocular and corneal anterior surfaces was higher in patients with high myopia compared to those with moderate and low myopia, and was also higher in patients with moderate myopia compared to those with low myopia (P < 0.05). Correlation analysis revealed there were strong positive correlations of IOP with the spherical aberration of both the ocular and corneal anterior surfaces in patients with low and moderate myopia (P < 0.01), as well as a strong positive correlation between IOP and the ocular aberrations in patients with high myopia(P < 0.01). IOPg showed strong positive correlations with the ocular aberrations in patients with low, moderate, and high myopia (P < 0.01), as well as a strong positive correlation with the corneal anterior surface spherical aberration in patients with moderate myopia (P < 0.01). IOPcc was positively correlated with the ocular aberrations in patients with low and moderate myopia (P < 0.05). CRF and CH were positively separately correlated with the spherical aberration of both the ocular and corneal anterior surfaces in patients with low and moderate myopia (P < 0.05), and positively correlated with the ocular aberrations in patients with high myopia (P < 0.05).
ConclusionThe ocular aberrations in patients with myopia are typically smaller than the corneal anterior surface aberrations. IOP, IOPg, and IOPcc are all correlated with ocular aberrations, and the correlation between corneal biomechanical parameters and high-order aberrations is stronger in patients with low myopia compared to those with moderate and high myopia.
-
Keywords:
- myopia /
- corneal biomechanics /
- aberrations /
- intraocular pressure /
- spherical aberration
-
-
表 1 95例患者左眼和右眼的全眼像差、角膜前表面像差比较(x±s)
μm 项目 左眼(n=95) 右眼(n=95) 总RMS 总RMSh 总RMS 总RMSh 全眼像差 0.82±0.22 0.30±0.08 0.78±0.19 0.32±0.09 角膜前表面像差 1.34±0.32* 0.57±0.13* 1.31±0.30* 0.59±0.15* RMS: 像差均方根; RMSh: 高阶像差均方根。与全眼像差比较, * P < 0.05。 表 2 不同近视程度患者右眼全眼、角膜前表面像差比较(x±s)
μm 患者类别 n 全眼 角膜前表面 总RMS 总RMSh 总RMS 总RMSh 低度近视患者 16 0.54±0.15 0.32±0.07 0.98±0.25 0.56±0.11 中度近视患者 47 0.66±0.18* 0.31±0.05 1.27±0.33* 0.58±0.09 高度近视患者 32 0.93±0.21*# 0.29±0.04 1.56±0.38*# 0.62±0.12 F 30.060 2.313 16.815 2.202 P < 0.001 0.105 < 0.001 0.116 与低度近视患者比较, * P < 0.05; 与中度近视患者比较, #P < 0.05。 表 3 不同近视程度患者右眼CCT、IOPg、IOPcc、CH、CRF比较(x±s)
患者类别 n CCT/μm IOP/mmHg IOPg/mmHg IOPcc/mmHg CH CRF 低度近视患者 16 545.87±28.94 15.92±3.63 15.72±3.52 15.78±3.26 10.80±1.83 10.83±1.94 中度近视患者 47 541.17±26.53 15.51±3.24 15.25±3.19 15.11±3.08 10.73±1.77 10.58±1.67 高度近视患者 32 542.55±30.02 15.46±3.30 16.03±3.01 15.78±3.15 10.26±1.59 10.33±1.55 F 0.167 0.113 0.585 0.543 0.862 0.502 P 0.847 0.893 0.559 0.583 0.426 0.607 CCT: 中央角膜厚度; IOP: 眼内压; IOPg: 校正Goldman眼压; IOPcc: 角膜补偿眼压; CH: 角膜黏滞阻力; CRF: 角膜阻力因子。 表 4 不同近视程度患者右眼角膜生物力学参数与高阶像差(彗差、球差)的相关性分析
角膜生物力学参数 低度近视患者(n=16) 中度近视患者(n=47) 高度近视患者(n=32) A彗差 A球差 C彗差 C球差 A彗差 A球差 C彗差 C球差 A彗差 A球差 C彗差 C球差 CCT 0.102 0.064 0.135 -0.015 0.141 0.182 0.037 0.080 0.089 -0.028 0.114 -0.041 IOP 0.071 0.637** 0.142 0.497** 0.050 0.349** -0.008 0.365** 0.104 0.375** 0.029 -0.038 IOPg -0.166 0.587** -0.094 0.142 0.098 0.443** 0.115 0.320** -0.022 0.396** 0.094 0.067 IOPcc -0.071 0.390* -0.163 0.116 0.105 0.321* 0.073 0.187 0.144 0.102 -0.102 -0.048 CRF 0.344 0.493* 0.218 0.492* 0.088 0.445* 0.117 0.281* 0.170 0.334* 0.120 0.139 CH 0.259 0.458* 0.168 0.416* 0.123 0.386* -0.031 0.233* 0.127 0.295* 0.108 0.149 A: 全眼; C: 角膜前表面。表中所列数据为相关性系数(r), * P < 0.05, * * P < 0.01。 -
[1] 朱娅萍, 董开业, 孙曙光, 等. 新型角膜生物力学参数在不同程度近视眼中的特性分析[J]. 国际眼科杂志, 2023, 23(4): 704-708. https://www.cnki.com.cn/Article/CJFDTOTAL-GJYK202304037.htm [2] 杨慧平, 韩登雷. 白内障合并高度近视2种手术方式比较研究[J]. 实用临床医药杂志, 2020, 24(22): 80-83. doi: 10.7619/jcmp.202022023 [3] 王倩茹, 李雪, 黄磊. 高度近视与眼部生物学参数关系的研究进展[J]. 中华眼视光学与视觉科学杂志, 2020, 22(11): 871-874. [4] 赵振波, 高思琪, 丁雨溪, 等. 三种新型眼前节生物分析系统测量角膜参数的比较研究[J]. 临床眼科杂志, 2023, 31(3): 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-LCYZ202303002.htm [5] 刘畅, 刘欣, 尚玥, 等. 圆锥角膜患者角膜生物力学特性与高阶像差相关参数变化及其相关性分析[J]. 山东医药, 2022, 62(11): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYY202211021.htm [6] 隋丹丹, 胡琦, 吴琼, 等. LASIK术后角膜生物力学变化与眼压测量值的相关性[J]. 眼科, 2016, 25(3): 187-191. https://www.cnki.com.cn/Article/CJFDTOTAL-YAKE201603015.htm [7] 张露. 近视人群全眼像差、角膜前表面像差与角膜生物力学测量参数之间的相关性研究[D]. 温州: 温州医科大学, 2014. [8] BLACKBURN B J, ROLLINS A M, DUPPS W J Jr. Biomechanics of ophthalmic crosslinking[J]. Transl Vis Sci Technol, 2021, 10(5): 8. doi: 10.1167/tvst.10.5.8
[9] HASHEMI H, ROBERTS C J, ELSHEIKH A, et al. Corneal biomechanics after SMILE, femtosecond-assisted LASIK, and photorefractive keratectomy: a matched comparison study[J]. Transl Vis Sci Technol, 2023, 12(3): 12. doi: 10.1167/tvst.12.3.12
[10] MARINESCU M, DASCALESCU D, CONSTANTIN M, et al. Corneal biomechanical properties in myopic and emmetropic children[J]. Eur Rev Med Pharmacol Sci, 2023, 27(8): 3580-3589.
[11] AL-MOHAIMEED M M. Combined corneal CXL and photorefractive keratectomy for treatment of keratoconus: a review[J]. Int J Ophthalmol, 2019, 12(12): 1929-1938. doi: 10.18240/ijo.2019.12.16
[12] VANATHI M, AZIMEERA S, GUPTA N, et al. Study on change in corneal biomechanics and effect of percent tissue altered in myopic laser-assisted in situ keratomileusis[J]. Indian J Ophthalmol, 2020, 68(12): 2964-2974. doi: 10.4103/ijo.IJO_1453_20
[13] SACHDEV G S, RAMAMURTHY S. Decade- long journey with small incision lenticule extraction: the learnings[J]. Indian J Ophthalmol, 2020, 68(12): 2705-2710. doi: 10.4103/ijo.IJO_2622_20
[14] DU Y R, ZHANG Y Q, ZHANG Y, et al. Analysis of potential impact factors of corneal biomechanics in myopia[J]. BMC Ophthalmol, 2023, 23(1): 143. doi: 10.1186/s12886-023-02891-8
[15] WAN K, CHEUNG S W, WOLFFSOHN J S, et al. Repeatability of corneal biomechanics waveform signal parameters derived from Ocular Response Analyzer in children[J]. Cont Lens Anterior Eye, 2021, 44(5): 101373. doi: 10.1016/j.clae.2020.10.003
[16] WU M L, HAN J, WANG X C, et al. The alterations of corneal biomechanics in adult patients with corneal dystrophy[J]. Eye, 2023, 37(3): 492-500. doi: 10.1038/s41433-022-01965-z
[17] ARIZA-GRACIA M Á, FLECHA-LESCÙN J, BÜCHLER P, et al. Corneal biomechanics after intrastromal ring surgery: optomechanical in silico assessment[J]. Transl Vis Sci Technol, 2020, 9(11): 26. doi: 10.1167/tvst.9.11.26
[18] BAO F J, LOPES B T, ZHENG X B, et al. Corneal biomechanics losses caused by refractive surgery[J]. Curr Eye Res, 2023, 48(2): 137-143. doi: 10.1080/02713683.2022.2103569
[19] GUO H, HOSSEINI-MOGHADDAM S M, HODGE W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: a systematic review and meta-analysis[J]. BMC Ophthalmol, 2019, 19(1): 167. doi: 10.1186/s12886-019-1165-3
[20] YU M R, CHEN M J, DAI J H. Comparison of the posterior corneal elevation and biomechanics after SMILE and LASEK for myopia: a short- and long-term observation[J]. Graefes Arch Clin Exp Ophthalmol, 2019, 257(3): 601-606. doi: 10.1007/s00417-018-04227-5
[21] WANG X R, MCALINDEN C, ZHANG H B, et al. Assessment of corneal biomechanics, tonometry and pachymetry with the corvis ST in myopia[J]. Sci Rep, 2021, 11(1): 3041. doi: 10.1038/s41598-020-80915-9
[22] FU D, LI M Y, KNORZ M C, et al. Intraocular pressure changes and corneal biomechanics after hyperopic small-incision lenticule extraction[J]. BMC Ophthalmol, 2020, 20(1): 129.
[23] HEMIDA A Y, SAID O M, ABDEL-MEGUID A A E, et al. Changes in corneal biomechanics and intraocular pressure following Femto-LASIK using Goldman applanation tonometry and ocular response analyzer[J]. Int J Ophthalmol, 2020, 13(5): 782-787. doi: 10.18240/ijo.2020.05.13
-
期刊类型引用(3)
1. 王永庆,蔡学礼,黄良通. 神经介入联合小剂量替罗非班在缺血性卒中患者中的应用. 中国医师杂志. 2024(09): 1423-1426 . 百度学术
2. 赵建彬,赵玮康. 双负荷剂量氯吡格雷联合阿司匹林治疗急性脑梗死的疗效研究. 中国合理用药探索. 2023(09): 73-77 . 百度学术
3. 陈莉,钟华. 阿替普酶静脉溶栓联合替罗非班及双抗治疗内囊预警综合征1例报道. 心脑血管病防治. 2022(05): 102-104 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 169
- HTML全文浏览量: 72
- PDF下载量: 16
- 被引次数: 3