分化型甲状腺癌人工智能语音随访系统的构建及应用

郭丝锦, 延常姣, 王洋, 曹小花, 王廷

郭丝锦, 延常姣, 王洋, 曹小花, 王廷. 分化型甲状腺癌人工智能语音随访系统的构建及应用[J]. 实用临床医药杂志, 2024, 28(16): 1-4, 9. DOI: 10.7619/jcmp.20241127
引用本文: 郭丝锦, 延常姣, 王洋, 曹小花, 王廷. 分化型甲状腺癌人工智能语音随访系统的构建及应用[J]. 实用临床医药杂志, 2024, 28(16): 1-4, 9. DOI: 10.7619/jcmp.20241127
GUO Sijin, YAN Changjiao, WANG Yang, CAO Xiaohua, WANG Ting. Establishment and application of artificial intelligence voice follow-up system for differentiated thyroid cancer[J]. Journal of Clinical Medicine in Practice, 2024, 28(16): 1-4, 9. DOI: 10.7619/jcmp.20241127
Citation: GUO Sijin, YAN Changjiao, WANG Yang, CAO Xiaohua, WANG Ting. Establishment and application of artificial intelligence voice follow-up system for differentiated thyroid cancer[J]. Journal of Clinical Medicine in Practice, 2024, 28(16): 1-4, 9. DOI: 10.7619/jcmp.20241127

分化型甲状腺癌人工智能语音随访系统的构建及应用

基金项目: 

陕西省重点研发项目 2021JZ-29

详细信息
    通讯作者:

    王廷, E-mail: ting_w100@126.com

  • 中图分类号: R736.1;R472;R319

Establishment and application of artificial intelligence voice follow-up system for differentiated thyroid cancer

  • 摘要:
    目的 

    构建分化型甲状腺癌人工智能语音随访系统,评价该系统信息采集的完整性和准确性。

    方法 

    根据分化型甲状腺癌患者术后用药及复查情况,构建分化型甲状腺癌人工智能语音随访系统。对2024年2月25—29日本院甲乳血管外科甲状腺癌数据库管理系统中未进行随访的2 471例分化型甲状腺癌患者进行电话随访,并随机抽取10%, 对220例患者的通话记录进行完整性和准确性分析。

    结果 

    本研究成功构建分化型甲状腺癌人工智能语音随访系统,总体电话接通率为88.9%。对于呼叫成功的患者,人工智能语音随访系统的随访平均用时(1.7±0.5) min, 总体信息采集完整率为83.8%, 术后3个月随访信息采集完整率为92.9%, 术后长期随访信息采集完整率为82.7%, 差异有统计学意义(χ2=15.200, P < 0.001)。该随访系统信息采集准确率为94.1%。说方言随访者和说普通话随访者的信息采集准确率分别为92.2%和95.4%, 差异无统计学意义(χ2=0.957, P=0.389)。

    结论 

    分化型甲状腺癌人工智能语音随访系统具有较高的信息采集效率、完整性和准确性, 可降低随访人力成本,在大规模分化型甲状腺癌人群随访中具有良好的应用前景。

    Abstract:
    Objective 

    To establish an artificial intelligence voice follow-up system for differentiated thyroid cancer and evaluate the completeness and accuracy of information collection by this system.

    Methods 

    Based on the postoperative medication and follow-up status of patients with differentiated thyroid cancer, an artificial intelligence voice follow-up system for differentiated thyroid cancer was established. From February 25 to 29, 2024, a total of 2, 471 differentiated thyroid cancer patients without follow-up in the thyroid cancer database management system of the Department of Thyroid and Breast Vascular Surgery of the Hospital were followed up by telephone, and 220 patients (approximately 10% of the total) were randomly selected for completeness and accuracy analyses of their call records.

    Results 

    This study successfully established an artificial intelligence voice follow-up system for differentiated thyroid cancer, and the overall call connection rate was 88.9%. For patients with successful calls, the average follow-up time of the artificial intelligence voice follow-up system was (1.7±0.5) minutes, the overall information collection completeness rate was 83.8%, with a completeness rate of 92.9% for follow-up at 3 months after surgery and 82.7% for long-term follow-up, and the differences were statistically significant (χ2=15.200, P < 0.001). The accuracy rate of information collection by this follow-up system was 94.1%. The accuracy rates of information collection for patients who spoke dialect and Mandarin during follow-up were 92.2% and 95.4% respectively, and the difference was not statistically significant (χ2=0.957, P=0.389).

    Conclusion 

    The artificial intelligence voice follow-up system for differentiated thyroid cancer has high efficiency, completeness, and accuracy in information collection, which can reduce human costs for follow-up and has good application prospects in large-scale follow-up of populations with differentiated thyroid cancer.

  • 图  1   分化型甲状腺癌患者术后3个月人工智能语音随访话术模板

    图  2   分化型甲状腺癌患者人工智能语音长期随访话术模板

    图  3   随访流程技术路线图

  • [1] 郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231. doi: 10.3760/cma.j.cn112152-20240119-00035
    [2]

    SCHLUMBERGER M, LEBOULLEUX S. Current practice in patients with differentiated thyroid cancer[J]. Nat Rev Endocrinol, 2021, 17(3): 176-188. doi: 10.1038/s41574-020-00448-z

    [3]

    SHOBAB L, BURMAN K D, WARTOFSKY L. Sex differences in differentiated thyroid cancer[J]. Thyroid, 2022, 32(3): 224-235. doi: 10.1089/thy.2021.0361

    [4] 袁小兵, 陈慰慰, 刘小莉, 等. 不同手术入路甲状腺根治术治疗分化型甲状腺癌患者的安全性及预后观察[J]. 中国医药导报, 2022, 19(17): 131-134, 162. doi: 10.3969/j.issn.1673-7210.2022.17.yycyzx202217032
    [5] 师庆科, 郑涛. 大型三甲医院患者智能随访语音平台设计与应用[J]. 中国数字医学, 2021, 16(8): 22-27. doi: 10.3969/j.issn.1673-7571.2021.08.005
    [6] 李雨珠. 人工智能在医学临床上的应用与展望[J]. 临床研究, 2024, 32(1): 196-198.
    [7] 许明. 《人工智能与医疗》出版: 浅析人工智能在医学诊断和治疗中的应用[J]. 介入放射学杂志, 2023, 32(5): 524.
    [8] 赵雯雯, 李鹏, 卢菲, 等. 多发性骨髓瘤患者人工智能随访系统的构建及应用[J]. 中华护理杂志, 2023, 58(15): 1826-1830. doi: 10.3761/j.issn.0254-1769.2023.15.006
    [9] 朱烨, 朱立颖, 杜瑞, 等. 人工智能语音随访系统在2型糖尿病患者中的应用[J]. 上海护理, 2023, 23(7): 28-31. doi: 10.3969/j.issn.1009-8399.2023.07.007
    [10] 朱建辉, 岑珏, 罗劲松, 等. 出院患者人工智能语音回访效果[J]. 解放军医院管理杂志, 2021, 28(3): 214-217.
    [11] 吴玲娣, 王伟. 人工智能机器人在胆胰外科日间手术患者出院随访中的应用价值[J]. 外科研究与新技术, 2019, 8(2): 138-140. doi: 10.3969/j.issn.2095-378X.2019.02.017
    [12] 范丽丽, 周春燕. 人工智能随访系统支持下的延续护理在日间病房甲状腺癌患者中应用的效果分析[J]. 中文科技期刊数据库(引文版)医药卫生, 2023(5): 13-16.
    [13] 尹毅丹, 杨建萍, 孙宁, 等. 智能语音随访系统在缺血性卒中二级预防中的应用分析[J]. 实用临床医药杂志, 2023, 27(22): 1-5. doi: 10.7619/jcmp.20231413
    [14] 王思源, 周峰, 高俊岭, 等. 人工智能电话随访在高血压随访管理中的应用[J]. 中国慢性病预防与控制, 2021, 29(11): 817-820.
  • 期刊类型引用(4)

    1. 吴蓓,郭辉,卢沛,陈景,王聪,郭倩倩,余海波. 授权理论的护理模式对胆囊切除术后患者自我护理能力及心理状态影响. 中国健康心理学杂志. 2025(02): 253-257 . 百度学术
    2. 代立群,王静,胡毛姐. 阶段性功能锻炼联合回馈式健康宣教对出血性脑卒中后偏瘫患者的干预效果. 实用心脑肺血管病杂志. 2025(04): 64-68+74 . 百度学术
    3. 戴玲,周建伟,郑明香,彭兰芳. 基于社会认知理论的冠心病经皮冠状动脉介入术后Ⅱ期远程家庭心脏康复方案的构建. 实用临床医药杂志. 2024(22): 110-114 . 本站查看
    4. 陈志琴. 医养结合理念指导下的中医护理模式在冠心病PCI后康复中的应用. 心血管病防治知识. 2024(18): 81-84 . 百度学术

    其他类型引用(0)

图(3)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  31
  • PDF下载量:  19
  • 被引次数: 4
出版历程
  • 收稿日期:  2024-03-17
  • 修回日期:  2024-05-23
  • 刊出日期:  2024-08-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭