Applicability evaluation of resting energy expenditure estimation equations for elderly people in pension institution
-
摘要:目的
基于养老机构老年人群, 比较9种常见静息能量消耗估算公式估算值与实测值的一致性。
方法通过整群抽样选取河南光大欧安乐龄养老中心老年人181例为研究对象,比较常见的9种公式估算值与间接测热法获得的实测值的差异,并通过亚组分析比较其在不同亚群中的一致性。
结果9种公式中, Cunningham公式和Owen公式的估算值与实测值偏差相对较小,差异无统计学意义(差异率分别为-1.9%和-2.0%, 均方根误差为222.7 kcal/d和239.4 kcal/d, 吻合比例为48.4%和47.5%)。在不同性别和体质量指数(BMI)的亚组中, Cunningham公式与实测值比较无显著差异, Owen公式仅部分亚组(男性BMI为20~ < 27 kg/m2和≥27 kg/m2以及女性BMI < 20 kg/m2)与实测值无显著差异。
结论Cunningham公式利用人体成分检测数据, 可较为准确、快捷地对养老机构老年人静息能量消耗进行评估,适用性较强。
Abstract:ObjectiveTo compare the consistency between the estimated values of nine common resting energy expenditure estimation equations and the measured values among the elderly population in pension institutions.
MethodsA total of 181 elderly individuals from Henan Guangda Ouan Leling Nursing Center were recruited as study objects through cluster sampling. The differences between the estimated values of nine common equations and the measured values obtained by indirect calorimetry were compared, and subgroup analyses were conducted to compare their consistency across different subgroups.
ResultsAmong the nine equations, the Cunningham equation and the Owen equation showed relatively small deviations from the measured values, with no significant differences (deviation rates of -1.9% and -2.0%, root mean square errors of 222.7 kcal/d and 239.4 kcal/d, and coincidence rates of 48.4% and 47.5%, respectively). In subgroups stratified by gender and body mass index (BMI), the Cunningham equation showed no significant difference compared with the measured values. The Owen equation showed no significant difference compared with the measured values only in some subgroups [males with BMI of 20~ < 27 kg/m2 and ≥27 kg/m2, and females with BMI < 20 kg/m2].
ConclusionThe Cunningham equation, which utilizes body composition data, can assess the resting energy expenditure of the elderly in pension institutions with relatively high accuracy and speed, demonstrating strong applicability in this population.
-
-
表 1 本研究采用的9种静息能量消耗估算公式
公式名称 性别 公式 Harris-Benedicta 男性 66.473 0+13.751 6×W(kg)+5.003 3×H(cm)-6.755 0×A 女性 655.095 5+9.563 4×W(kg)+1.849 6×H(cm)-4.675 6×A FAO/WHO/UNUb 男性 {36.8×W(kg)+4 719.5×[H(cm)/100]-4 481}/4.186 女性 {38.5×W(kg)+2 665.2×[H(cm)/100]-1 264}/4.186 Schofieldc 男性 [0.049×W(kg)+2.459]×1 000/4.186 女性 [0.038×W(kg)+2.755]×1 000/4.186 Fredrixb 男性 1 641+10.7×W(kg)-9.0×A-203×1 女性 1 641+10.7×W(kg)-9.0×A-203×2 Owenc 男性 879+10.2×W(kg) 女性 795+7.18×W(kg) Ganpulea 男性 [0.048 1×W(kg)+0.023 4×H(cm)-0.013 8×A-0.423 5]×1 000/4.186 女性 [0.048 1×W(kg)+0.023 4×H(cm)-0.013 8×A-0.970 8]×1 000/4.186 Karch-McArdled — 370+21.6×FFM(kg) Cunninghamd — 500+22.0×FFM(kg) Thumb — W(kg)×20 a表示以身高、体质量、年龄为参数的公式; b表示以体质量、身高或年龄为参数的公式; c表示仅以体质量为参数的公式; d表示仅以去脂体质量为参数的公式。其中, HB公式、FAO/WHO/UNU公式、Schofield公式和Ganpule公式是在《日本膳食参考摄入量(2020)》中讨论的REE估算公式; Owen公式、Fredrix公式、Cunningham公式和Karch-McArdle公式为文献[9]中推荐的常见公式; Thumb公式来自《欧洲临床营养和代谢学会老年医学临床营养和水合指南》。
W: 体质量; H: 身高; A: 年龄; FFM: 去脂体质量。表 2 181例养老院常住老人9种公式REE估算值与实测值比较的准确性($\overline x $±s)[M(P25, P75)]
估算公式 REE估算值a/(kcal/d) W/t Pb 差值均值/(kcal/d) 差值的标准差 差值的95%LoA/(kcal/d) 吻合比例/% Cunningham 1 314(1 227, 1 454) 6 700 0.234 8 223.3 -429.5, 445.9 48.4 FAO/WHO/UNU 1 262(1 164, 1 343) 11 492 < 0.000 1 83 232.2 -372.2, 538.0 41.4 Fredrix 1 182(1 086, 1 333) 13 489 < 0.000 1 131 230.5 -320.4, 583.2 42.5 Ganpule 1 089(969, 1 243) 15 103 < 0.000 1 224 233.7 -233.9, 682.3 21.5 HB 1 136(1 068, 1 223) 14 737.5 < 0.000 1 208 247.4 -276.7, 693.1 34.3 Karch-McArdle 1 168(1 085, 1 306) 10 817 < 0.000 1 154 222.9 -283.3, 590.5 39.6 Owen 1 267(1 194, 1 518) 8 681 0.222 9 239.9 -461.2, 479.2 47.5 Rule of thumbc 1 231±219 7.3 < 0.000 1 121 241.2 -351.6, 594.0 37.6 Schofield 1 229(1 148, 1 339) 12 241 < 0.000 1 97 226.1 -346.3, 540.1 44.2 a提示符合正态分布的数据采用($\overline x $±s)描述, 不符合正态分布的数据采用[M(P25, P75)]描述; b提示公式估算值与实测值比较的P值
(正态分布数据采用配对样本t检验,非正态分布数据采用配对样本Wilcoxon符号秩检验); c提示Rule of thumb=体质量×20。表 3 Owen公式与Cunningham公式估算值与实测值差别的亚组比较($\overline x $±s)
变量 亚类 实测值/(kcal/d) Owen公式 Cunningham公式 估算值/(kcal/d) t P b 估算值/(kcal/d) t P b 年龄 65~79岁 1 417.5±320.4 1 331.3±219.3 -2.23 0.033 1 365.7±171.6 -1.55 0.131 ≥80岁 1 343.2±255.4 1 347.7±185.5 0.239 0.812 1 344.4±170.6 0.06 0.955 t 1.45 -0.45 — — 0.62 — — Pa 0.148 0.652 — — 0.535 — — 性别 男性 1 485.6±287.8 1 563.3±124.9 2.55 0.013 1 494.8±177.3 0.05 0.964 女性 1 281.1±227.0 1 213.4±61.3 -3.50 0.001 1 262.3±87.6 -1.02 0.312 t 5.28 25.11 — — 11.04 — — Pa < 0.000 1 < 0.000 1 — — < 0.000 1 — — BMI < 20 kg/m2 1 119.8±162.4 1 268.8±144.7 0.004 1 211.0±126.6 1.37 0.199 20~ < 27 kg/m2 1 333.8±246.0 1 318.0±178.0 0.210 1 344.6±165.1 0.43 0.665 ≥27 kg/m2 1 475.3±290.1 1 429.7±210.5 0.085 1 397.8±174.5 -2.43 0.019 F 12.77 7.801 — — 6.05 — — Pa < 0.000 1 0.001 — — 0.003 — — a提示年龄、性别、BMI亚组内部各层之间比较的P值(两样本比较采用配对样本t检验,多组样本比较采用方差分析); b提示公式估算值与实测值比较的P值。BMI: 体质量指数。 表 4 Owen公式和Cunningham公式在性别和BMI交叉亚组的比较($\overline x $±s)[M(P25, P75)]
性别 体质量指数/(kg/m2) 实测值/(kcal/d) Owen公式 Cunningham公式 估算值/(kcal/d) t Pa 估算值/(kcal/d) t/W Pa 男性 < 20 1 173.5±166.7 1 372.8±78.9 -3.62 0.008 1 266.7(1 197.4, 1 308.0) 7.01 0.563 20~ < 27 1 475.9±240.3 1 533.1±71.0 -1.50 0.141 1 428.8±133.7 -0.93 0.361 ≥27 1 629.4±314.5 1 698.4±77.6 -1.05 0.309 1 614.9±179.6 0.72 0.480 女性 < 20 1 057.1±158.2 1 125.0±37.4 -1.30 0.241 1 152.3(1 111.6, 1 245.8) 1.23 0.063 20~ < 27 1 258.9±260.0 1 193.2±42.4 2.93 0.005 1 252.3±83.1 0.46 0.645 ≥27 1 381.9±250.3 1 279.5±42.9 2.44 0.020 1 304.7±76.9 1.82 0.080 a提示公式估算值与实测值比较的P值(正态分布数据采用配对样本t检验, 非正态分布数据采用配对样本Wilcoxon符号秩检验)。 -
[1] ZHAO Y L, LIN T P, HOU L S, et al. Association between geriatric nutritional risk index and frailty in older hospitalized patients[J]. Clin Interv Aging, 2021, 16: 1241-1249. doi: 10.2147/CIA.S313827
[2] 张燕妮, 庄秋林, 谈善军, 等. 《欧洲临床营养与代谢协会老年患者临床营养和水化实践指南》解读[J]. 中华消化外科杂志, 2022, 21(6): 708-725. doi: 10.3760/cma.j.cn115610-20220325-00164 [3] 毛拥军, 吴剑卿, 刘龚翔, 等. 老年人营养不良防控干预中国专家共识(2022)[J]. 中华老年医学杂志, 2022, 41(7): 749-759. doi: 10.3760/cma.j.issn.0254-9026.2022.07.001 [4] POURHASSAN M, DAUBERT D, WIRTH R. Measured and predicted resting energy expenditure in malnourished older hospitalized patients: a cross-sectional and longitudinal comparison[J]. Nutrients, 2020, 12(8): 2240. doi: 10.3390/nu12082240
[5] CIOFFI I, MARRA M, PASANISI F, et al. Prediction of resting energy expenditure in healthy older adults: a systematic review[J]. Clin Nutr, 2021, 40(5): 3094-3103. doi: 10.1016/j.clnu.2020.11.027
[6] 科技部人体健康态评估规范研究及人体健康态信息评价规范研究课题组. 人体健康态监测与评估规范[J]. 中华健康管理学杂志, 2022, 16(12): 809-832. doi: 10.3760/cma.j.cn115624-20220929-00726 [7] PÉREZ ÁN, ALVAREZ G, NUÑEZ A, et al. SUN-PO190: utility of segmental bioimpedance (inbody S10) in the evaluation of vascular access[J]. Clin Nutr, 2019, 38: S130.
[8] JAPAN M O H L. Dietary reference intakes for Japanese[Z]. 2022.
[9] OCAGLI H, LANERA C, AZZOLINA D, et al. Resting energy expenditure in the elderly: systematic review and comparison of equations in an experimental population[J]. Nutrients, 2021, 13(2): 458. doi: 10.3390/nu13020458
[10] VOLKERT D, BECK A M, CEDERHOLM T, et al. ESPEN guideline on clinical nutrition and hydration in geriatrics[J]. Clin Nutr, 2019, 38(1): 10-47. doi: 10.1016/j.clnu.2018.05.024
[11] 中国营养学会. 中国居民膳食指南(2022)[M]. 北京: 人民卫生出版社, 2022: 1-73. [12] BLAND J M, ALTMAN D G. Statistical methods for assessing agreement between two methods of clinical measurement[J]. Lancet, 1986, 1(8476): 307-310.
[13] XIA F X, HAO W K, LIANG J X, et al. Applicability of Creatinine-based equations for estimating glomerular filtration rate in elderly Chinese patients[J]. BMC Geriatr, 2021, 21(1): 481. doi: 10.1186/s12877-021-02428-y
[14] GRIGGS C, GOVERMAN J, BITTNER E A, et al. Sedation and pain management in burn patients[J]. Clin Plast Surg, 2017, 44(3): 535-540. doi: 10.1016/j.cps.2017.02.026
[15] DONINI L M, POGGIOGALLE E, MOLFINO A, et al. Mini-nutritional assessment, malnutrition universal screening tool, and nutrition risk screening tool for the nutritional evaluation of older nursing home residents[J]. J Am Med Dir Assoc, 2016, 17(10): 959. e11-959. e18. doi: 10.1016/j.jamda.2016.06.028
[16] 崔红元, 朱明炜, 陈伟, 等. 中国老年住院患者营养状态的多中心调查研究[J]. 中华老年医学杂志, 2021, 40(3): 364-369. doi: 10.3760/cma.j.issn.0254-9026.2021.03.019 [17] 中国发展研究基金会. 中国老年人营养与健康报告[M]. 北京: 中国发展出版社, 2016: 1-43. [18] KAWASE F, MASAKI Y, OZAWA H, et al. Resting energy expenditure in older inpatients: a comparison of prediction equations and measurements[J]. Nutrients, 2022, 14(24): 5210. doi: 10.3390/nu14245210
[19] RITZ P. Factors affecting energy and macronutrient requirements in elderly people[J]. Public Health Nutr, 2001, 4(2B): 561-568. doi: 10.1079/PHN2001141
[20] CEREDA E, VERONESE N, CACCIALANZA R. The final word on nutritional screening and assessment in older persons[J]. Curr Opin Clin Nutr Metab Care, 2018, 21(1): 24-29. doi: 10.1097/MCO.0000000000000431
[21] HUGGETT D L, CONNELLY D M, OVEREND T J. Maximal aerobic capacity testing of older adults: a critical review[J]. J Gerontol A Biol Sci Med Sci, 2005, 60(1): 57-66. doi: 10.1093/gerona/60.1.57
[22] LAHAYE C, DERUMEAUX-BUREL H, GUILLET C, et al. Determinants of resting energy expenditure in very old nursing home residents[J]. J Nutr Health Aging, 2022, 26(9): 872-878. doi: 10.1007/s12603-022-1837-1
[23] GALLAGHER D, ALLEN A, WANG Z, et al. Smaller organ tissue mass in the elderly fails to explain lower resting metabolic rate[J]. Ann N Y Acad Sci, 2000, 904: 449-455. doi: 10.1111/j.1749-6632.2000.tb06499.x
[24] 单清, 包云, 张舒. 不同性别老年人群静息能量消耗影响因素分析[J]. 实用老年医学, 2020, 34(2): 155-158. doi: 10.3969/j.issn.1003-9198.2020.02.014 [25] 陈伟. 中国健康成人体成分评估方法的建立与应用研究[D]. 北京: 北京协和医学院, 2017. -
期刊类型引用(1)
1. 万姜维,成东茹,王涛,高萍. 血清乳酸脱氢酶、β_2微球蛋白、铁蛋白联合改良WHO预后积分系统预测骨髓增生异常综合征预后不良的价值. 实用临床医药杂志. 2024(05): 79-84 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 69
- HTML全文浏览量: 15
- PDF下载量: 5
- 被引次数: 1