γδ T细胞在肝细胞癌免疫治疗中的现状与展望

曹玲玲, 梅小才, 陈乾, 张建

曹玲玲, 梅小才, 陈乾, 张建. γδ T细胞在肝细胞癌免疫治疗中的现状与展望[J]. 实用临床医药杂志, 2025, 29(7): 131-137. DOI: 10.7619/jcmp.20242075
引用本文: 曹玲玲, 梅小才, 陈乾, 张建. γδ T细胞在肝细胞癌免疫治疗中的现状与展望[J]. 实用临床医药杂志, 2025, 29(7): 131-137. DOI: 10.7619/jcmp.20242075
CAO Lingling, MEI Xiaocai, CHEN Qian, ZHANG Jian. Immunotherapy of γδ T cells in hepatocellular carcinoma: current status and perspectives[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 131-137. DOI: 10.7619/jcmp.20242075
Citation: CAO Lingling, MEI Xiaocai, CHEN Qian, ZHANG Jian. Immunotherapy of γδ T cells in hepatocellular carcinoma: current status and perspectives[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 131-137. DOI: 10.7619/jcmp.20242075

γδ T细胞在肝细胞癌免疫治疗中的现状与展望

基金项目: 

贵州省科技计划项目 黔科合基础-ZK (2024)一般247

详细信息
    通讯作者:

    张建

  • 中图分类号: R34;R456;R575

Immunotherapy of γδ T cells in hepatocellular carcinoma: current status and perspectives

  • 摘要:

    肝细胞癌(HCC)严重威胁人类的健康, γδ T细胞作为T淋巴细胞中的一个亚群, 是一种免疫治疗方法的主要靶点。γδ T细胞可以直接识别和靶向HCC细胞,使其成为免疫治疗的潜在靶点。本研究探讨γδ T细胞的生物学特性及其在HCC细胞内的双重作用和治疗策略,并对γδ T细胞治疗HCC的研究进行综述。

    Abstract:

    The hepatocellular carcinoma (HCC) poses a serious threat to human health. The main target of one of the immunotherapeutic approaches is γδ T cells. γδ T cells as one of the subpopulations of T lymphocytes can directly recognize and target HCC cells, making them a potential target for immunotherapy. In this paper, we discussed the biological properties of γδ T cells and their dual roles within HCC cells and therapeutic strategies, and provide an overview on the research of γδ T cell therapy for HCC.

  • 宫颈上皮内瘤变(CIN)是与子宫颈浸润癌密切相关的一组子宫颈鳞状上皮内非典型增生病变,好发于年轻性活跃期妇女。近年来,宫颈癌的发病出现年轻化的趋势[1]。人乳头状瘤病毒(HPV)是一种常见的致宫颈癌病毒,致癌性HPV也会导致宫颈发生癌前病变,即CI。有关文献[2-3]指出,高危型人乳头瘤病毒(HR-HPV)的持续感染与CIN的发病有关。电灼、冷冻、激光、宫颈环形电切除术与宫颈锥切术是治疗CIN的主要方法,但是复发率及宫颈组织缺失是避免不了的缺陷,术后患者常会出现早产、晚期流产以及其他围生期并发症风险。基于CIN自发性逆转率高及其治疗中存在的上述不良风险,美国最近的管理指导方针建议对高级别CIN的年轻患者采取保守治疗方式,以尽量降低治疗对未来妊娠带来的风险。5-氨基酮戊酸光动力疗法(ALA-PDT)是一种具有高度选择性的药械结合微创治疗技术,通过激光结合光敏剂的非侵入性疗法,能够用于治疗尖锐湿疣以及癌前病变等疾病。相关研究[4]指出, ALA-PDT在治疗HPV感染所致宫颈疾病中有较高的价值。本院就ALA-PDT对宫颈HPV感染合并CIN疗效及预后的影响进行研究,探讨ALA治疗的最佳浓度,报告如下。

    选择2016年9月—2018年8月在本院就诊的100例经阴道镜和病理组织检查确诊为宫颈上皮内瘤样病变患者作为研究对象,其中23例为CINⅠ期, 77例为CINⅡ期。将患者分为安慰剂组、5% ALA治疗组、10% ALA治疗组和20% ALA治疗组,每组25例。安慰剂组CINⅠ有6例, CINⅡ19例; 5% ALA治疗组CINⅠ4例, CINⅡ21例; 10% ALA治疗组CINⅠ6例, CINⅡ19例; 20% ALA治疗组CINⅠ7例, CINⅡ18例。分别给予安慰剂, 5%、10%与20%的新鲜的ALA温敏凝胶治疗。纳入标准: ①年龄18~60岁; ②病程为1~2年; ③ HR-HPV持续阳性患者; ④自愿签署知情同意书的患者。排除标准: ①病变已经延伸至阴道穹隆的患者; ②有CIN治疗史的患者; ③阴道感染患者; ④妊娠或哺乳期的患者; ⑤卟啉病患者; ⑥长期服激素患者。4组患者的年龄、体质量指数及病程等一般资料均具有可比性(P>0.05)。

    HR-HPV DNA检测: 采用HPV DNA杂交捕获试验检测所有患者治疗前与治疗后3个月、治疗6个月后宫颈脱落细胞中HPV DNA16、18、31、33、35、39、45、51、52、56、58和59。检测试剂及仪器均购自美国西门子公司,严格按照说明书操作进行。

    ALA-PDT治疗: 选择温敏凝胶剂配制一定量5%、10%与20%的新鲜的ALA温敏凝胶。选择光动力治疗仪(LED IB型)、半导体激光治疗仪(LD600-C)进行治疗。局部应用20% 5-氨基酮戊酸(ALA)浸湿制备的薄棉片,按118 mg/cm2标准覆盖至病变外缘1 cm, 用外套避孕套的无菌纱卷塞入阴道封包,持续敷药时间不少于3 h, 进行ALA治疗。先在患者宫颈外口处使用点光照射30 min, 剂量为100 J/cm2, 再将柱状光纤插入宫颈口进行10 min的照射,剂量为80 J/cm2。每周治疗1次,连续6次。

    安慰剂组患者先给予对照药膏进行帖敷,再给予ALA进行治疗。

    疗效评估: 治疗后3个月与6个月时,通过组织学和细胞学显示的结果对患者宫颈情况进行检查,若结果显示正常或轻度异常,脱落细胞的HR-HPV DNA结果转阴则为有效。

    选择SPSS 15.00软件对数据进行统计分析,计量资料采用(x±s)表示,行t检验; 选计数资料行χ2检验,用[n(%)]表示,等级资料用秩和检验; 当P < 0.05时差异有统计学意义。

    治疗3~6个月后,安慰剂组、5%ALA治疗组、10%ALA治疗组和20%ALA治疗组治疗CINⅡ患者的治疗有效率分别为57.89%、61.90%、68.42%和94.44%, 安慰剂组与其余3组有效率比较无显著差异(P>0.05)。治疗3、6个月后,安慰剂组CINⅡ期患者的有效率显著低于20%ALA治疗组治疗CINⅡ患者,数据差异有统计学意义(χ2=10.48, P < 0.05)。20% ALA组CINⅡ期患者在治疗6个月后HPV16/18阴转率显著高于安慰剂组、5% ALA治疗组、10% ALA治疗组,差异有统计学意义(χ2=14.27, P < 0.05)。见表 1

    表  1  各组CINⅡ期患者的疗效比较[(n)%]
    组别 n 治疗3个月后 治疗6个月后
    有效 HPV清除 不良反应 局部出血 局部不适 有效 HPV清除 不良反应 局部出血 局部不适
    安慰组 19 11(57.89) 0 3(15.79) 1(5.26) 2(10.53) 12(63.16) 6(31.58) 4(21.05) 3(15.79) 4(21.05)
    5% ALA 21 13(61.90) 6(28.57) 6(28.57) 2(9.52) 2(9.52) 16(76.19) 8(38.10) 6(28.57) 3(14.29) 4(19.05)
    10% ALA 19 13(68.42) 8(42.11) 6(31.58) 2(10.53) 2(10.53) 16(84.21) 8(42.11) 5(26.32) 3(15.79) 4(21.05)
    20% ALA 18 17(94.44) 15(83.33) 10(55.55) 1(5.55) 2(11.11) 17(94.44) 13(72.22) 6(33.33) 4(22.22) 4(22.22)
    下载: 导出CSV 
    | 显示表格

    CIN有较大的发展为宫颈浸润癌的可能[5]。感染HR-HPV会加快宫颈鳞状上皮的细胞非典型增生,故HR-HPV感染属于CIN转变为宫颈瘤的一个较为重要的因素,因此CIN的早期检测与诊断能够便于及时有效治疗,在预防宫预癌具有重大意义[7-9]。本研究就ALA-PDT法对CNIⅠ/Ⅱ伴HPV感染患者治疗效果进行研究。ALA治疗CINⅠ/Ⅱ与HIV持续感染的患者的主要机制[10-12]: 进入机体的外源性ALA在增生活跃的宫颈上皮细胞处被吸收,然后在细胞内经过一系列的生化反应后转化为原叶啉Ⅸ。原叶啉Ⅸ属于光敏物质,在特定波长的光的照射后能够产生大量的活性氧,进而消灭周围较为活跃的增生上皮细胞达到治疗效果。

    ALA-PDT的治疗效果与药物的浓度存在一定相关性,因为在宫颈上皮细胞内所进入的ALA浓度直接影响PDT的效果[13]。相关研究[14-15]指出, 3~6 h内宫颈上皮细胞吸收ALA的量会达到饱和状态,而且20%浓度的ALA是持续治疗HR-HPV感染最有效的浓度。而本次分别对5%、10%以及20%浓度的ALA进行封闭后再进行光疗,在进行3、6个月的治疗后,浓度为20%ALA的CINⅡ患者HR-HPV阴转率最高; 同时浓度为20%的ALA治疗CINⅡ患者的有效率也最高,这与之前的相关研究结果一致。而与ALA-PDT治疗次数及间隔时间有关的标准仍未得到统一。由于本次的研究样本较小,故尚未对治疗的间隔时间、治疗次数与治疗效果的相关性进行研究。

    本次研究选择CINⅠ/Ⅱ, 但没有选择CINⅢ的原因是CINⅢ病变已经属于癌前病变,此种病变有较高的侵袭性,故对于CINⅢ的患者本院主要选择手术方法进行治疗,而非保守治疗的方法。有研究报道指出,选择ALA-PDT进行3个月的治疗后CINⅡ患者有高达90%的清除率,同时也有73%的HPV转阴率。也有研究发现,用浓度与3%ALA在对CINⅠ/Ⅱ进行治疗时,与对照组相比疗效无明显差异。在上述研究中,虽然ALA均作为局部的宫颈用药,但所得到的结果与本次本院的研究结果依然存在一定的差异,这可能与CIN等级以及研究对象的样本数有关外,还可能与治疗时间、ALA的浓度、PDT光波长与光剂量的不同等因素有关。本次研究结果显示,不同浓度ALA与安慰剂对CINⅠ患者的治疗有效率无显著差异; 这可能是由于CINⅠ患者的病变程度较低,有着较高的自然愈合率。

    由上述结果可知,在临床ALA-PDT的治疗过程中,应该遵循个体差异的原则,依据患者的具体情况给予患者不同剂量进行治疗; 另外,在不同浓度ALA-PDT治疗后的随访期内,有部分患者出现了可耐受的局部不良反应,但经过相关处理后不良反应均得到控制且未影响治疗的效果。

    综上所述,浓度为20%ALA在治疗CINⅡ的患者时能够得到较高的有效率,同时HR-HPV也有较高的转阴率。尽管对CINⅠ患者的治疗效果并不显著,但是ALA-PDT对合并HR-HPV感染的CIN患者的治疗方面应用前景良好。

  • 图  1   γδ T细胞的特征

    NKR: 自然杀伤受体; TCR: T细胞受体; TNF: 肿瘤坏死因子; TRAIL: 肿瘤怀素因子相关凋亡诱导配体; FASL: FAS配体; IFN: 干扰素; TME: 肿瘤微环境; HLA: 人类白细胞抗原。

    图  2   γδ T细胞与肝细胞癌细胞之间的相互作用

    注: Vδ1和Vδ2 T细胞具有细胞毒性作用,能够识别
    和转化细胞表达的应激抗原。

  • [1]

    FOERSTER F, GAIRING S J, MÜLLER L, et al. NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options[J]. J Hepatol, 2022, 76(2): 446-457. doi: 10.1016/j.jhep.2021.09.007

    [2]

    WANG Y, DENG B C. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers[J]. Cancer Metastasis Rev, 2023, 42(3): 629-652. doi: 10.1007/s10555-023-10084-4

    [3]

    CHEN Q, YANG S B, ZHANG Y W, et al. MiR-3682-3p directly targets FOXO3 and stimulates tumor stemness in hepatocellular carcinoma via a positive feedback loop involving FOXO3/PI3K/AKT/c-Myc[J]. World J Stem Cells, 2022, 14(7): 539-555. doi: 10.4252/wjsc.v14.i7.539

    [4]

    CHEN C, WANG Z H, DING Y, et al. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma[J]. Front Immunol, 2023, 14: 1133308. doi: 10.3389/fimmu.2023.1133308

    [5]

    PAPATHEODORIDI M, TAMPAKI M, LOK A S, et al. Risk of HBV reactivation during therapies for HCC: a systematic review[J]. Hepatology, 2022, 75(5): 1257-1274. doi: 10.1002/hep.32241

    [6]

    VITALE A, SVEGLIATI-BARONI G, ORTOLANI A, et al. Epidemiological trends and trajectories of MAFLD-associated hepatocellular carcinoma 2002-2033: the ITA. LI. CA database[J]. Gut, 2023, 72(1): 141-152. doi: 10.1136/gutjnl-2021-324915

    [7]

    CRANE H, GOFTON C, SHARMA A, et al. MAFLD: an optimal framework for understanding liver cancer phenotypes[J]. J Gastroenterol, 2023, 58(10): 947-964. doi: 10.1007/s00535-023-02021-7

    [8]

    NORERO B, DUFOUR J F. Should we undertake surveillance for HCC in patients with MAFLD?[J]. Ther Adv Endocrinol Metab, 2023, 14: 20420188231160389. doi: 10.1177/20420188231160389

    [9]

    LIU Y, XUN Z Z, MA K, et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy[J]. J Hepatol, 2023, 78(4): 770-782. doi: 10.1016/j.jhep.2023.01.011

    [10]

    CHENG K, CAI N, ZHU J H, et al. Tumor-associated macrophages in liver cancer: from mechanisms to therapy[J]. Cancer Commun, 2022, 42(11): 1112-1140. doi: 10.1002/cac2.12345

    [11]

    YOU M J, GAO Y N, FU J L, et al. Epigenetic regulation of HBV-specific tumor-infiltrating T cells in HBV-related HCC[J]. Hepatology, 2023, 78(3): 943-958. doi: 10.1097/HEP.0000000000000369

    [12]

    PAPADAKOS S P, ARVANITAKIS K, STERGIOU I E, et al. γδ T cells: a game changer in the future of hepatocellular carcinoma immunotherapy[J]. Int J Mol Sci, 2024, 25(3): 1381. doi: 10.3390/ijms25031381

    [13]

    HUNG Y P, SHAO Y Y, LEE J M, et al. Potential of circulating immune cells as biomarkers of nivolumab treatment efficacy for advanced hepatocellular carcinoma[J]. J Chin Med Assoc, 2021, 84(2): 144-150. doi: 10.1097/JCMA.0000000000000477

    [14]

    ZHANG L R, XU J L, ZHOU S Q, et al. Endothelial DGKG promotes tumor angiogenesis and immune evasion in hepatocellular carcinoma[J]. J Hepatol, 2024, 80(1): 82-98. doi: 10.1016/j.jhep.2023.10.006

    [15]

    YU H, SHI T Z, YAO L L, et al. Elevated nuclear PIGL disrupts the cMyc/BRD4 axis and improves PD-1 blockade therapy by dampening tumor immune evasion[J]. Cell Mol Immunol, 2023, 20(8): 867-880. doi: 10.1038/s41423-023-01048-3

    [16]

    HU Y, CHEN D, HONG M J, et al. Apoptosis, pyroptosis, and ferroptosis conspiringly induce immunosuppressive hepatocellular carcinoma microenvironment and γδ T-cell imbalance[J]. Front Immunol, 2022, 13: 845974. doi: 10.3389/fimmu.2022.845974

    [17]

    YI Y, HE H W, WANG J X, et al. The functional impairment of HCC-infiltrating γδ T cells, partially mediated by regulatory T cells in a TGFβ- and IL-10-dependent manner[J]. J Hepatol, 2013, 58(5): 977-983. doi: 10.1016/j.jhep.2012.12.015

    [18]

    HE W J, HU Y, CHEN D, et al. Hepatocellular carcinoma-infiltrating γδ T cells are functionally defected and allogenic Vδ2+ γδ T cell can be a promising complement[J]. Clin Transl Med, 2022, 12(4): e800. doi: 10.1002/ctm2.800

    [19]

    HAN J W, YOON S K. Tissue-resident lymphocytes: implications in immunotherapy for hepatocellular carcinoma[J]. Int J Mol Sci, 2020, 22(1): 232. doi: 10.3390/ijms22010232

    [20]

    VANTOUROUT P, LAING A, WOODWARD M J, et al. Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing γδ T cell biology[J]. Proc Natl Acad Sci U S A, 2018, 115(5): 1039-1044. doi: 10.1073/pnas.1701237115

    [21]

    HERRMANN T, FICHTNER A S, KARUNAKARAN M M. An update on the molecular basis of phosphoantigen recognition by Vγ9Vδ2 T cells[J]. Cells, 2020, 9(6): 1433. doi: 10.3390/cells9061433

    [22]

    MA L, FENG Y M, ZHOU Z S. A close look at current γδ T-cell immunotherapy[J]. Front Immunol, 2023, 14: 1140623. doi: 10.3389/fimmu.2023.1140623

    [23]

    CHEN D, GUO Y L, JIANG J H, et al. γδ T cell exhaustion: Opportunities for intervention[J]. J Leukoc Biol, 2022, 112(6): 1669-1676. doi: 10.1002/JLB.5MR0722-777R

    [24] 佟佳益, 郑改改, 王宇, 等. 医学人工智能研究热点双聚类分析[J]. 实用临床医药杂志, 2024, 28(3): 13-17, 22. doi: 10.7619/jcmp.20232042
    [25]

    SEBESTYEN Z, PRINZ I, DÉCHANET-MERVILLE J, et al. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies[J]. Nat Rev Drug Discov, 2020, 19(3): 169-184. doi: 10.1038/s41573-019-0038-z

    [26]

    DEKKERS J F, ALIEVA M, CLEVEN A, et al. Uncovering the mode of action of engineered T cells in patient cancer organoids[J]. Nat Biotechnol, 2023, 41(1): 60-69. doi: 10.1038/s41587-022-01397-w

    [27]

    ZAKERI N, HALL A, SWADLING L, et al. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma[J]. Nat Commun, 2022, 13(1): 1372. doi: 10.1038/s41467-022-29012-1

    [28]

    MCGRAW J M, THELEN F, HAMPTON E N, et al. JAML promotes CD8 and γδ T cell antitumor immunity and is a novel target for cancer immunotherapy[J]. J Exp Med, 2021, 218(10): e20202644. doi: 10.1084/jem.20202644

    [29]

    TITOV A, ZMIEVSKAYA E, GANEEVA I, et al. Adoptive immunotherapy beyond CAR T-cells[J]. Cancers, 2021, 13(4): 743. doi: 10.3390/cancers13040743

    [30]

    TOSOLINI M, PONT F, POUPOT M, et al. Assessment of tumor-infiltrating TCRV γ 9V δ 2 γδ lymphocyte abundance by deconvolution of human cancers microarrays[J]. Oncoimmunology, 2017, 6(3): e1284723. doi: 10.1080/2162402X.2017.1284723

    [31]

    GENTLES A J, NEWMAN A M, LIU C L, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers[J]. Nat Med, 2015, 21(8): 938-945. doi: 10.1038/nm.3909

    [32]

    ZHAO N, DANG H, MA L C, et al. Intratumoral γδ T-cell infiltrates, chemokine (C-C motif) ligand 4/chemokine (C-C motif) ligand 5 protein expression and survival in patients with hepatocellular carcinoma[J]. Hepatology, 2021, 73(3): 1045-1060. doi: 10.1002/hep.31412

    [33]

    DE VRIES N L, VAN DE HAAR J, VENINGA V, et al. γδ T cells are effectors of immunotherapy in cancers with HLA class I defects[J]. Nature, 2023, 613(7945): 743-750. doi: 10.1038/s41586-022-05593-1

    [34]

    DU Y Y, PENG Q W, CHENG D, et al. Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing γδ T cells[J]. Nat Commun, 2022, 13(1): 231. doi: 10.1038/s41467-021-27936-8

    [35]

    JIANG H, YANG Z, SONG Z Y, et al. γδ T cells in hepatocellular carcinoma patients present cytotoxic activity but are reduced in potency due to IL-2 and IL-21 pathways[J]. Int Immunopharmacol, 2019, 70: 167-173. doi: 10.1016/j.intimp.2019.02.019

    [36]

    WANG X, TIAN Z. γδ T cells in liver diseases[J]. Front Med, 2018, 12(3): 262-268. doi: 10.1007/s11684-017-0584-x

    [37]

    KANG I, KIM Y, LEE H K. γδ T cells as a potential therapeutic agent for glioblastoma[J]. Front Immunol, 2023, 14: 1273986. doi: 10.3389/fimmu.2023.1273986

    [38]

    XIAO Z Q, WANG S S, TIAN Y X, et al. METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells[J]. Cell Rep, 2023, 42(7): 112684. doi: 10.1016/j.celrep.2023.112684

    [39]

    YUAN L J, MA X Q, YANG Y Y, et al. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells[J]. Nature, 2023, 621(7980): 840-848. doi: 10.1038/s41586-023-06525-3

    [40]

    SILVA-SANTOS B, MENSURADO S, COFFELT S B. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer[J]. Nat Rev Cancer, 2019, 19(7): 392-404. doi: 10.1038/s41568-019-0153-5

    [41]

    SONG M J, HE J Y, PAN Q Z, et al. Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression[J]. Hepatology, 2021, 73(5): 1717-1735. doi: 10.1002/hep.31792

    [42]

    HAN S L, BAO X Y, ZOU Y F, et al. D-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma[J]. Sci Adv, 2023, 9(29): eadg2697. doi: 10.1126/sciadv.adg2697

    [43]

    TOUTIRAIS O, CHARTIER P, DUBOIS D, et al. Constitutive expression of TGF-bêta1, interleukin-6 and interleukin-8 by tumor cells as a major component of immune escape in human ovarian carcinoma[J]. Eur Cytokine Netw, 2003, 14(4): 246-255.

    [44]

    CHOI H, LEE Y, PARK S A, et al. Human allogenic γδ T cells kill patient-derived glioblastoma cells expressing high levels of DNAM-1 ligands[J]. Oncoimmunology, 2022, 11(1): 2138152. doi: 10.1080/2162402X.2022.2138152

    [45]

    MONDRAGÓN L, KROEMER G, GALLUZZI L. Immunosuppressive γδ T cells foster pancreatic carcinogenesis[J]. Oncoimmunology, 2016, 5(11): e1237328. doi: 10.1080/2162402X.2016.1237328

    [46]

    MAKKOUK A, YANG X C, BARCA T, et al. Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma[J]. J Immunother Cancer, 2021, 9(12): e003441. doi: 10.1136/jitc-2021-003441

    [47]

    CAO W Q, SHARMA M, IMAM R, et al. Study on diagnostic values of astrocyte elevated gene 1 (AEG-1) and glypican 3 (GPC-3) in hepatocellular carcinoma[J]. Am J Clin Pathol, 2019, 152(5): 647-655. doi: 10.1093/ajcp/aqz086

    [48]

    DANGI A, HUSAIN I, JORDAN C Z, et al. Blocking CCL8-CCR8-mediated early allograft inflammation improves kidney transplant function[J]. J Am Soc Nephrol, 2022, 33(10): 1876-1890. doi: 10.1681/ASN.2022020139

    [49]

    WEI Y, LAO X M, XIAO X, et al. Plasma cell polarization to the immunoglobulin G phenotype in hepatocellular carcinomas involves epigenetic alterations and promotes hepatoma progression in mice[J]. Gastroenterology, 2019, 156(6): 1890-1904. e16. doi: 10.1053/j.gastro.2019.01.250

    [50]

    LIANG J Y, WANG D S, LIN H C, et al. A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular carcinoma[J]. Int J Biol Sci, 2020, 16(13): 2430-2441. doi: 10.7150/ijbs.45050

    [51]

    GUO M Z, YUAN F F, QI F, et al. Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8+T cells in hepatocellular carcinoma using multiplex quantitative analysis[J]. J Transl Med, 2020, 18(1): 306. doi: 10.1186/s12967-020-02469-8

    [52]

    SCHULZ-JUERGENSEN S, MARISCHEN L, WESCH D, et al. Markers of operational immune tolerance after pediatric liver transplantation in patients under immunosuppression[J]. Pediatr Transplant, 2013, 17(4): 348-354. doi: 10.1111/petr.12079

    [53]

    ZHANG R Y, ZHANG Z, LIU Z K, et al. Adoptive cell transfer therapy for hepatocellular carcinoma[J]. Front Med, 2019, 13(1): 3-11. doi: 10.1007/s11684-019-0684-x

  • 期刊类型引用(9)

    1. 魏艳飞,徐春燕,魏玲,刘勃,于倩,董闯. HPV感染相关CIN患者血清HLA-E和HLA-G表达与疾病进展及治疗后复发的相关性. 安徽医学. 2024(01): 34-38 . 百度学术
    2. 唐容迪,倪泞,沈菲. 5-氨基酮戊酸光动力学疗法联合干扰素栓对持续高危型人乳头瘤病毒感染患者病毒清除率及阴道微环境的影响. 中国当代医药. 2024(12): 108-111+116 . 百度学术
    3. 蒋红梅. 阴道镜联合利普刀治疗宫颈上皮内瘤变患者的临床效果. 妇儿健康导刊. 2023(07): 42-44 . 百度学术
    4. 谭锦辉,劳慧琴,蓝莉芳,李贤周,曾玉玲. 光动力疗法治疗宫颈高危HPV感染的临床效果. 中国城乡企业卫生. 2022(03): 148-150 . 百度学术
    5. 成乐楠,葛利葱,卢晓莉,李宁,杨秋云. 5-氨基酮戊酸光动力疗法治疗子宫颈低级别鳞状上皮内病变合并高危型人乳头瘤病毒感染的疗效观察. 实用临床医药杂志. 2021(06): 20-24 . 本站查看
    6. 马梦柯. 光动力疗法在女性生殖系统疾病中的应用及并发症的护理. 现代泌尿生殖肿瘤杂志. 2021(02): 126-128 . 百度学术
    7. 李宏. 光动力学疗法在妇科肿瘤中应用的研究. 医学信息. 2021(21): 49-51 . 百度学术
    8. 高娟,王霞,夏亚芳,华彩凤. 光动力治疗宫颈低级别上皮内瘤变的疗效观察. 实用临床医药杂志. 2021(23): 106-109 . 本站查看
    9. 黄舒婷,左帆,刘雯雯,杨欣影,吴良芝. 5-氨基酮戊酸光动力治疗16型或(和)18型人乳头状瘤病毒宫颈持续感染合并宫颈低级别上皮内瘤样病变疗效观察. 妇产与遗传(电子版). 2020(03): 17-21 . 百度学术

    其他类型引用(1)

图(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 10
出版历程
  • 收稿日期:  2024-05-16
  • 修回日期:  2024-08-27
  • 刊出日期:  2025-04-14

目录

/

返回文章
返回
x 关闭 永久关闭