Research progress on hyperoxia-induced brain injury in preterm infants
-
摘要:
新生儿重症监护室(NICU)技术的发展,使得氧疗普遍应用于早产儿抢救治疗中,提高了早产儿存活率。然而,与高氧相关的早产儿脑病(EOP)、早产儿视网膜病(ROP)和支气管肺发育不良(BPD)等并发症严重影响存活早产儿的生存质量。本文综述了高氧导致脑损伤的临床及动物实验研究现状,明确与高氧相关早产儿神经系统损伤可能的表现及机制,为早产儿临床安全用氧决策提供理论依据。
Abstract:With the advances of technology in neonatal intensive care unit (NICU), oxygen therapy in the resuscitation and treatment of preterm infants is widely applied, which significantly improves their survival rates.However, complications associated with hyperoxia, such as early onset preterm encephalopathy (EOP), retinopathy of prematurity (ROP), and bronchopulmonary dysplasia (BPD), severely affect the quality of life of surviving preterm infants.This article reviewed the current clinical and animal experimental research on hyperoxia-induced brain injury, clarifying the potential manifestations and mechanisms of neurological damage related to hyperoxia in preterm infants.The findings provide a theoretical basis for safe oxygen use decisions in clinical practice for preterm infants.
-
Keywords:
- hyperoxia /
- brain injury /
- bronchopulmonary dysplasia /
- preterm infant /
- animal experiments /
- neonate
-
-
表 1 高氧导致脑损伤动物模型及验证
动物 FiO2 高氧暴露开始时间 高氧暴露持续时间 脑损伤区域 损伤细胞及变化趋势 Wistar rat[14] 80% P6 24 h 脑白质、灰质丘脑、海马 OLs凋亡增加 Wistar rat[15] 80% P6 24 h 小脑 AS产生生长因子减少; OPCs增殖减少及成熟障碍; OLs凋亡增加 Wistar rat[16] 80% P6 24 h 小脑皮质 Neu: GCPs增殖及成熟减少、凋亡增加; PC树突形成延迟、分支减少 Wistar rat[17] 80% P6 24 h 脑白质: 外囊、胼胝体 OPCs增殖减少、成熟障碍、凋亡增加、髓鞘形成不足; MG活化 Wistar ratsynRas-transgenic mice[18] 80% P7 24 h 尾状核、伏隔核、额叶、顶叶、扣带、压后皮质、前脑内的白质束 Neu凋亡 Sprague-Dawley rat[19] 80% P6 24 h — Neu谷氨酸分泌增加,兴奋性毒性损伤 C57BL/6 WT mice[20] 80% P5 48 h 脑灰质 GABA能中间神经元功能损伤及成熟障碍 C57BL/6 WT mice[3] 80% P5 48 h 脑灰质 OLs神经营养因子表达减少、髓鞘形成减少; GABA能中间神经元成熟障碍及细胞损伤 Sprague-Dawley rat[21] 80% P6 48 h — — Wistar rat[22] 80% P3 48 h 脑白质 OPCs髓鞘形成不足 C57BL/6 WT mice[8] 80% P4 4 d 外囊、脑室下区、脑室周围区 外囊: OLs减少、毛细血管减少; 脑白质: AS增生; 脑室下区: 细胞凋亡增加; 脑室周围区: 毛细血管减少 Sprague-Dawley rat[23] 80% P1 6 d 脑灰质、海马 — — 80% P6 24 h — Neu兴奋性毒性损伤: 谷氨酸转运体表达下降,谷氨酸在突触间隙堆积[24] C57BL/6 WT mice[25] 80%~85% P6 48 h 海马 NPCs生成减少、凋亡增加; 中间神经元减少、树突分支减少 Wistar rat[26] 85% P1/P3/P7 24 h/72 h/7 d 脑灰质 Neu凋亡增加 Wistar rat[27] 85% P1 7 d 海马 Neu凋亡增加 Wistar rat[28] 85% P1 7 d 大脑皮层 — C57BL/6 WT mice[29] 85% P1 10 d 海马齿状回: 颗粒下区侧脑室: 脑室下区 NPCs增殖减少、凋亡增加 C57BL/6 WT mice(BPD)[6] 85% P1 14 d 总大脑体积减小,海马体积减小,脑室下区、海马齿状回亦受影响 NPCs增殖减少 Wistar rat[30] >85% P1 24 h/72 h/7 d 海马 海马锥体细胞体积、数量减少 C57BL/6 WT mice[31] 90% P0 7 d 前额叶皮层、顶叶皮层、海马 Neu凋亡增加; OLs髓鞘形成减少 Sprague-Dawley rat[32] 100% P14 7 d 海马 海马锥体细胞凋亡增加 Wistar rat[33] 100% P7 48 h 大脑皮质(主要累及,外侧明显); 海马、齿状回(轻微改变); 小脑(受累不明显); 中央白质(仅少量变性细胞) — FiO2: 吸入氧浓度; NPCs: 神经祖细胞; OPCs: 少突胶质前体细胞; OLs: 少突胶质细胞; AS: 星形胶质细胞; MG: 小胶质细胞; Neu: 神经元;
GCPs: 小脑颗粒细胞前体; PC: 浦肯野细胞; GABA: γ-氨基丁酸。表 1 高氧导致脑损伤动物模型及验证
动物 FiO2 高氧暴露开始时间 高氧暴露持续时间 脑损伤区域 损伤细胞及变化趋势 Wistar rat[14] 80% P6 24 h 脑白质、灰质丘脑、海马 OLs凋亡增加 Wistar rat[15] 80% P6 24 h 小脑 AS产生生长因子减少; OPCs增殖减少及成熟障碍; OLs凋亡增加 Wistar rat[16] 80% P6 24 h 小脑皮质 Neu: GCPs增殖及成熟减少、凋亡增加; PC树突形成延迟、分支减少 Wistar rat[17] 80% P6 24 h 脑白质: 外囊、胼胝体 OPCs增殖减少、成熟障碍、凋亡增加、髓鞘形成不足; MG活化 Wistar ratsynRas-transgenic mice[18] 80% P7 24 h 尾状核、伏隔核、额叶、顶叶、扣带、压后皮质、前脑内的白质束 Neu凋亡 Sprague-Dawley rat[19] 80% P6 24 h — Neu谷氨酸分泌增加,兴奋性毒性损伤 C57BL/6 WT mice[20] 80% P5 48 h 脑灰质 GABA能中间神经元功能损伤及成熟障碍 C57BL/6 WT mice[3] 80% P5 48 h 脑灰质 OLs神经营养因子表达减少、髓鞘形成减少; GABA能中间神经元成熟障碍及细胞损伤 Sprague-Dawley rat[21] 80% P6 48 h — — Wistar rat[22] 80% P3 48 h 脑白质 OPCs髓鞘形成不足 C57BL/6 WT mice[8] 80% P4 4 d 外囊、脑室下区、脑室周围区 外囊: OLs减少、毛细血管减少; 脑白质: AS增生; 脑室下区: 细胞凋亡增加; 脑室周围区: 毛细血管减少 Sprague-Dawley rat[23] 80% P1 6 d 脑灰质、海马 — — 80% P6 24 h — Neu兴奋性毒性损伤: 谷氨酸转运体表达下降,谷氨酸在突触间隙堆积[24] C57BL/6 WT mice[25] 80%~85% P6 48 h 海马 NPCs生成减少、凋亡增加; 中间神经元减少、树突分支减少 Wistar rat[26] 85% P1/P3/P7 24 h/72 h/7 d 脑灰质 Neu凋亡增加 Wistar rat[27] 85% P1 7 d 海马 Neu凋亡增加 Wistar rat[28] 85% P1 7 d 大脑皮层 — C57BL/6 WT mice[29] 85% P1 10 d 海马齿状回: 颗粒下区侧脑室: 脑室下区 NPCs增殖减少、凋亡增加 C57BL/6 WT mice(BPD)[6] 85% P1 14 d 总大脑体积减小,海马体积减小,脑室下区、海马齿状回亦受影响 NPCs增殖减少 Wistar rat[30] >85% P1 24 h/72 h/7 d 海马 海马锥体细胞体积、数量减少 C57BL/6 WT mice[31] 90% P0 7 d 前额叶皮层、顶叶皮层、海马 Neu凋亡增加; OLs髓鞘形成减少 Sprague-Dawley rat[32] 100% P14 7 d 海马 海马锥体细胞凋亡增加 Wistar rat[33] 100% P7 48 h 大脑皮质(主要累及,外侧明显); 海马、齿状回(轻微改变); 小脑(受累不明显); 中央白质(仅少量变性细胞) — FiO2: 吸入氧浓度; NPCs: 神经祖细胞; OPCs: 少突胶质前体细胞; OLs: 少突胶质细胞; AS: 星形胶质细胞; MG: 小胶质细胞; Neu: 神经元;
GCPs: 小脑颗粒细胞前体; PC: 浦肯野细胞; GABA: γ-氨基丁酸。 -
[1] DEUBER C, TERHAAR M. Hyperoxia in very preterm infants: a systematic review of the literature[J]. J Perinat Neonatal Nurs, 2011, 25(3): 268-274. doi: 10.1097/JPN.0b013e318226ee2c
[2] 喻韬, 罗蓉, 王秋, 等. 新生儿期疾病及治疗对早产儿发生脑性瘫痪的影响[J]. 四川大学学报: 医学版, 2013, 44(2): 270-273. [3] SCHEUER T, BRINKE E A D, GROSSER S, et al. Reduction of cortical parvalbumin-expressing GABAergic interneurons in a rodent hyperoxia model of preterm birth brain injury with deficits in social behavior and cognition[J]. Development, 2021, 148(20): dev198390. doi: 10.1242/dev.198390
[4] 罗蓉, 母得志. 建立早产儿脑损伤的随访与早期干预体系[J]. 四川大学学报: 医学版, 2013, 44(2): 265-269. [5] 马晓利. 新生儿早期脑血流变化规律及机械通气对脑血流的影响[D]. 广州: 暨南大学, 2010. [6] LITHOPOULOS M A, TOUSSAY X, ZHONG S, et al. Neonatal hyperoxia in mice triggers long-term cognitive deficits via impairments in cerebrovascular function and neurogenesis[J]. J Clin Invest, 2022, 132(22): e146095. doi: 10.1172/JCI146095
[7] BREHMER F, BENDIX I, PRAGER S, et al. Interaction of inflammation and hyperoxia in a rat model of neonatal white matter damage[J]. PLoS One, 2012, 7(11): e49023. doi: 10.1371/journal.pone.0049023
[8] SONG W L, HOPPE G, HANNA D, et al. Hyperoxia induced hypomyelination[J]. Biomedicines, 2022, 11(1): 37. doi: 10.3390/biomedicines11010037
[9] SUNNY D E, HAMMER E, ITTERMANN T, et al. Fetal zone steroids and estrogen show sex specific effects on oligodendrocyte precursor cells in response to oxidative damage[J]. Int J Mol Sci, 2021, 22(12): 6586. doi: 10.3390/ijms22126586
[10] OBST S, HERZ J, ALEJANDRE ALCAZAR M A, et al. Perinatal hyperoxia and developmental consequences on the lung-brain axis[J]. Oxid Med Cell Longev, 2022, 2022: 5784146.
[11] BERGER J, BHANDARI V. Animal models of bronchopulmonary dysplasia. The term mouse models[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(12): L936-L947. doi: 10.1152/ajplung.00159.2014
[12] SEMPLE B D, BLOMGREN K, GIMLIN K, et al. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species[J]. Prog Neurobiol, 2013, 106: 1-16.
[13] DETTMAN R W, DIZON M L V. How lung injury and therapeutic oxygen could alter white matter development[J]. J Neurosci Res, 2022, 100(12): 2127-2137. doi: 10.1002/jnr.24816
[14] JUNGNER Ä, VALLIUS KVIST S, ROMANTSIK O, et al. White matter brain development after exposure to circulating cell-free hemoglobin and hyperoxia in a rat pup model[J]. Dev Neurosci, 2020, 41(3/4): 234-246.
[15] SCHEUER T, KLEIN L S, BVHRER C, et al. Transient improvement of cerebellar oligodendroglial development in a neonatal hyperoxia model by PDGFA treatment[J]. Dev Neurobiol, 2019, 79(3): 222-235. doi: 10.1002/dneu.22667
[16] SCHEUER T, SHARKOVSKA Y, TARABYKIN V, et al. Neonatal hyperoxia perturbs neuronal development in the cerebellum[J]. Mol Neurobiol, 2018, 55(5): 3901-3915.
[17] SCHMITZ T, KRABBE G, WEIKERT G, et al. Minocycline protects the immature white matter against hyperoxia[J]. Exp Neurol, 2014, 254: 153-165. doi: 10.1016/j.expneurol.2014.01.017
[18] FELDERHOFF-MUESER U, BITTIGAU P, SIFRINGER M, et al. Oxygen causes cell death in the developing brain[J]. Neurobiol Dis, 2004, 17(2): 273-282. doi: 10.1016/j.nbd.2004.07.019
[19] 刘永青, 赵钰玮, 张健, 等. 硫酸镁对高氧脑损伤新生大鼠的神经保护作用[J]. 广西医学, 2021, 43(6): 707-710. [20] SCHEUER T, ENDESFELDER S, AUF DEM BRINKE E, et al. Neonatal oxidative stress impairs cortical synapse formation and GABA homeostasis in parvalbumin-expressing interneurons[J]. Oxid Med Cell Longev, 2022, 2022: 8469756.
[21] AL N, ÇAKIR A, KOÇ C, et al. Antioxidative effects of uridine in a neonatal rat model of hyperoxic brain injury[J]. Turk J Med Sci, 2020, 50(8): 2059-2066. doi: 10.3906/sag-2002-14
[22] DEWAN M V, SERDAR M, VAN DE LOOIJ Y, et al. Repetitive erythropoietin treatment improves long-term neurocognitive outcome by attenuating hyperoxia-induced hypomyelination in the developing brain[J]. Front Neurol, 2020, 11: 804. doi: 10.3389/fneur.2020.00804
[23] KANG L, DONG W B, LI X B, et al. Resveratrol relieves hyperoxia-induced brain injury in neonatal rats by activating Sirt1[J]. Am J Perinatol, 2021, 38(S01): e351-e358.
[24] 王丹丹, 刘光辉, 赵钰玮, 等. 高氧对新生大鼠脑内谷氨酸及其转运体的影响[J]. 安徽医科大学学报, 2018, 53(9): 1388-1391. [25] ABBAH J, VACHER C M, GOLDSTEIN E Z, et al. Oxidative stress-induced damage to the developing hippocampus is mediated by GSK3β[J]. J Neurosci, 2022, 42(24): 4812-4827. doi: 10.1523/JNEUROSCI.2389-21.2022
[26] 王叶, 王红, 朴丽贞, 等. 高氧诱导下新生大鼠脑损伤的发生机制和前列腺素E1的干预作用[J]. 吉林大学学报: 医学版, 2019, 45(6): 1206-1211, 1479-1480. [27] 张有辰, 李慧文, 金福. 人参皂苷Rg1对高氧诱导新生大鼠脑损伤的作用及机制[J]. 贵州医科大学学报, 2022, 47(12): 1403-1408. [28] 杨山, 张有辰, 李慧文, 等. 前列腺素E1对高氧诱导新生大鼠脑损伤的保护作用[J]. 中国当代儿科杂志, 2018, 20(3): 230-235. [29] DAPAAH-SIAKWAN F, ZAMBRANO R, LUO S H, et al. Caspase-1 inhibition attenuates hyperoxia-induced lung and brain injury in neonatal mice[J]. Am J Respir Cell Mol Biol, 2019, 61(3): 341-354. doi: 10.1165/rcmb.2018-0192OC
[30] 张书剑, 张有辰, 李慧文, 等. 高氧对新生大鼠脑组织中NRP-cGMP信号通路的影响[J]. 吉林大学学报: 医学版, 2018, 44(3): 477-482, 693. [31] MICILI S C, ENGVR D, GENC S, et al. Oxygen exposure in early life activates NLRP3 inflammasome in mouse brain[J]. Neurosci Lett, 2020, 738: 135389. doi: 10.1016/j.neulet.2020.135389
[32] 颜莉丽, 陈燕, 程闪, 等. 盐酸戊乙奎醚对高氧所致幼鼠脑损伤时Shh/Gli1信号通路的影响[J]. 中国实用神经疾病杂志, 2020, 23(9): 743-748. [33] 戈平, 姜毅. 常压高浓度氧对正常新生大鼠脑组织的影响[J]. 中华儿科杂志, 2000, 38(6): 53-54. [34] 韩玉玲, 程璐. 儿童呼吸系统疾病氧气治疗[J]. 中国实用儿科杂志, 2021, 36(3): 193-199. [35] TER HORST S A J, WAGENAAR G T M, DE BOER E, et al. Pentoxifylline reduces fibrin deposition and prolongs survival in neonatal hyperoxic lung injury[J]. J Appl Physiol (1985), 2004, 97(5): 2014-2019. doi: 10.1152/japplphysiol.00452.2004
[36] CHANG J L, BASHIR M, SANTIAGO C, et al. Intrauterine growth restriction and hyperoxia as a cause of white matter injury[J]. Dev Neurosci, 2018, 40(4): 344-357. doi: 10.1159/000494273
[37] RITTER J, SCHMITZ T, CHEW L J, et al. Neonatal hyperoxia exposure disrupts axon–oligodendrocyte integrity in the subcortical white matter[J]. J Neurosci, 2013, 33(21): 8990-9002. doi: 10.1523/JNEUROSCI.5528-12.2013
[38] BENDIX I, HADAMITZKY M, HERZ J, et al. Adverse neuropsychiatric development following perinatal brain injury: from a preclinical perspective[J]. Pediatr Res, 2019, 85(2): 198-215. doi: 10.1038/s41390-018-0222-6
[39] BRUGNIAUX J V, COOMBS G B, BARAK O F, et al. Highs and lows of hyperoxia: physiological, performance, and clinical aspects[J]. Am J Physiol Regul Integr Comp Physiol, 2018, 315(1): R1-R27. doi: 10.1152/ajpregu.00165.2017
[40] 邢英琦, 徐静, 李琳, 等. 缺氧诱导因子(HIF-1)的结构、调节与靶基因研究进展[J]. 中国实验诊断学, 2011, 15(1): 177-179. [41] YUEN T J, SILBEREIS J C, GRIVEAU A, et al. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis[J]. Cell, 2014, 158(2): 383-396. doi: 10.1016/j.cell.2014.04.052
[42] SIRINYAN M, SENNLAUB F, DORFMAN A, et al. Hyperoxic exposure leads to nitrative stress and ensuing microvascular degeneration and diminished brain mass and function in the immature subject[J]. Stroke, 2006, 37(11): 2807-2815. doi: 10.1161/01.STR.0000245082.19294.ff
[43] FAVRAIS G, VAN DE LOOIJ Y, FLEISS B, et al. Systemic inflammation disrupts the developmental program of white matter[J]. Ann Neurol, 2011, 70(4): 550-565. doi: 10.1002/ana.22489
[44] SUNNY D E, HAMMER E, STREMPEL S, et al. Nup133 and ERα mediate the differential effects of hyperoxia-induced damage in male and female OPCs[J]. Mol Cell Pediatr, 2020, 7(1): 10. doi: 10.1186/s40348-020-00102-8
[45] HETZ C, SAXENA S. ER stress and the unfolded protein response in neurodegeneration[J]. Nat Rev Neurol, 2017, 13(8): 477-491. doi: 10.1038/nrneurol.2017.99
[46] 何欣, 金福, 赵寒阳, 等. 促红细胞生成素对高氧脑损伤新生大鼠CCAAT增强子结合蛋白同源蛋白及葡萄糖调节蛋白78表达的影响[J]. 延边大学医学学报, 2019, 42(1): 12-15. [47] FELDERHOFF-MUESER U, SIFRINGER M, POLLEY O, et al. Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain[J]. Ann Neurol, 2005, 57(1): 50-59. doi: 10.1002/ana.20322
[48] MILLER S L, YAWNO T, ALERS N O, et al. Antenatal antioxidant treatment with melatonin to decrease newborn neurodevelopmental deficits and brain injury caused by fetal growth restriction[J]. J Pineal Res, 2014, 56(3): 283-294. doi: 10.1111/jpi.12121
[49] PASSERA S, BOCCAZZI M, BOKOBZA C, et al. Therapeutic potential of stem cells for preterm infant brain damage: can we move from the heterogeneity of preclinical and clinical studies to established therapeutics[J]. Biochem Pharmacol, 2021, 186: 114461.
[50] KAMINSKI N, KÖSTER C, MOULOUD Y, et al. Mesenchymal stromal cell-derived extracellular vesicles reduce neuroinflammation, promote neural cell proliferation and improve oligodendrocyte maturation in neonatal hypoxic-ischemic brain injury[J]. Front Cell Neurosci, 2020, 14: 601176. http://www.socolar.com/Article/Index?aid=100085533566&jid=100000009457
[51] SERDAR M, HERZ J, KEMPE K, et al. Protection of oligodendrocytes through neuronal overexpression of the small GTPase ras in hyperoxia-induced neonatal brain injury[J]. Front Neurol, 2018, 9: 175.
-
期刊类型引用(9)
1. 曲振廷,叶关毅,李环,徐小磊,李素芬. 归脾汤加减治疗儿童学习困难型多动症的临床研究. 吉林医药学院学报. 2024(03): 200-203 . 百度学术
2. 张倩,刘广华,何月敏,谢晓颖,徐乐瑶. 整合心理行为干预对多动症患儿认知功能及P300的影响. 中国基层医药. 2024(06): 885-889 . 百度学术
3. 苑成浩,杨丽,李明,刘晓亮. 调神益智汤联合生物反馈对学龄期多动症患儿血清ACTH、CORT水平的影响. 四川中医. 2024(07): 129-132 . 百度学术
4. 钦云峰,凌寅杰,袁琛. 脑蛋白水解物联合盐酸托莫西汀治疗小儿多动症的效果观察及对患儿认知功能的影响. 中国妇幼保健. 2024(17): 3327-3331 . 百度学术
5. 巫慧敏,任妍,朱帝玲,陈月,张素华,秦成洁,罗映娟,杨柳. 四川省成都市42679名学龄前儿童中注意缺陷多动障碍现状调研及影响因素分析. 实用临床医药杂志. 2023(08): 62-66 . 本站查看
6. 赵云鹏,白光磊,梁力泳. 自拟清心补气平肝汤联合盐酸托莫西汀治疗注意缺陷多动障碍的临床研究. 国际中医中药杂志. 2023(06): 684-688 . 百度学术
7. 张雪宁,谢振中,庞玉兰. 注意缺陷多动障碍患儿肠道细菌构成特点及临床意义. 中国妇幼保健. 2023(14): 2593-2596 . 百度学术
8. 李辉. 不同严重程度多动症儿童的血清NE和DA水平及其影响因素分析. 中国处方药. 2023(10): 169-171 . 百度学术
9. 徐晓慧. 分析3~10岁儿童注意缺陷多动症状的发生状况及其与睡眠的关系. 世界睡眠医学杂志. 2023(10): 2350-2352 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 12