Research progress on relationship between blood-brain barrier and pancreatic encephalopathy
-
摘要:
重症急性胰腺炎(SAP)是常见急腹症, 而胰性脑病(PE)是SAP并发症之一,表现为胰腺发生炎症时伴随中枢神经系统(CNS)病变。血脑屏障(BBB)作为外周循环与CNS之间的物理生化屏障,在维持CNS稳定微环境方面起着重要作用。BBB受损可导致SAP患者继发性脑水肿。研究BBB与SAP的关系可以为PE的防治提供新思路。本文综述BBB的细胞组成、基本结构、生理学功能,以及炎症因子、肠道微生物群在PE病程中对BBB调节作用的研究现状,探讨PE发生、发展过程中BBB的变化规律。
Abstract:Severe acute pancreatitis (SAP) is a common acute abdominal condition, with pancreatic encephalopathy (PE) being one of its complications, characterized by central nervous system (CNS) lesions when pancreatic inflammation occur. The blood-brain barrier (BBB), serving as a physical and biochemical barrier between peripheral circulation and the CNS, plays a crucial role in maintaining the stable microenvironment of the CNS. Damage to the BBB can lead to secondary cerebral edema in SAP patients. Investigating the relationship between BBB and SAP can provide new insights into the prevention and treatment of PE. This review summarized the cellular composition, basic structure, and physiological functions, as well as the current research status of inflammatory factors and gut microbiota in the course of PE in adjusting BBB, exploring the patterns of BBB changes during the onset and progression of PE.
-
-
[1] ABBOTT N J, PATABENDIGE A A K, DOLMAN D E M, et al. Structure and function of the blood-brain barrier[J]. Neurobiol Dis, 2010, 37(1): 13-25. doi: 10.1016/j.nbd.2009.07.030
[2] SWEENEY M D, ZHAO Z, MONTAGNE A, et al. Blood-brain barrier: from physiology to disease and back[J]. Physiol Rev, 2019, 99(1): 21-78. doi: 10.1152/physrev.00050.2017
[3] HALLAC A, PURI N, APPLEBURY D, et al. The value of quick sepsis-related organ failure assessment scores in patients with acute pancreatitis who present to emergency departments: a three-year cohort study[J]. Gastroenterology Res, 2019, 12(2): 67-71. doi: 10.14740/gr1132
[4] PEERY A F, CROCKETT S D, MURPHY C C, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018[J]. Gastroenterology, 2019, 156(1): 254-272, e11. doi: 10.1053/j.gastro.2018.08.063
[5] PETROV M S, YADAV D. Global epidemiology and holistic prevention of pancreatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(3): 175-184. doi: 10.1038/s41575-018-0087-5
[6] SZATMARY P, GRAMMATIKOPOULOS T, CAI W H, et al. Acute pancreatitis: diagnosis and treatment[J]. Drugs, 2022, 82(12): 1251-1276. doi: 10.1007/s40265-022-01766-4
[7] JHA R K, MA Q Y, SHA H C, et al. Protective effect of resveratrol in severe acute pancreatitis-induced brain injury[J]. Pancreas, 2009, 38(8): 947-953. http://www.onacademic.com/detail/journal_1000039416390210_795a.html
[8] DONG Z X, SONG J, GE M H, et al. Effectiveness of a multidisciplinary comprehensive intervention model based on the Hospital Elderly Life Program to prevent delirium in patients with severe acute pancreatitis[J]. Ann Palliat Med, 2020, 9(4): 2221-2228. doi: 10.21037/apm-20-913
[9] XU Y Y, WANG J F, ZHANG Z P. Severe acute pancreatitis concurrent with lethal rupture of cerebral aneurysm: a case report and review of the literature[J]. Int J Surg Case Rep, 2020, 75: 89-93. doi: 10.1016/j.ijscr.2020.08.016
[10] NEUWELT E A, BAUER B, FAHLKE C, et al. Engaging neuroscience to advance translational research in brain barrier biology[J]. Nat Rev Neurosci, 2011, 12(3): 169-182. doi: 10.1038/nrn2995
[11] AMRUTA N, BIX G. ATN-161 Ameliorates Ischemia/Reperfusion-induced Oxidative Stress, Fibro-inflammation, Mitochondrial damage, and Apoptosis-mediated Tight Junction Disruption in bEnd. 3 Cells[J]. Inflammation, 2021, 44(6): 2377-2394. doi: 10.1007/s10753-021-01509-9
[12] GASTFRIEND B D, PALECEK S P, SHUSTA E V. Modeling the blood-brain barrier: beyond the endothelial cells[J]. Curr Opin Biomed Eng, 2018, 5: 6-12. doi: 10.1016/j.cobme.2017.11.002
[13] WALTER F R, HARAZIN A, TÓTH A E, et al. Blood-brain barrier dysfunction in L-ornithine induced acute pancreatitis in rats and the direct effect of L-ornithine on cultured brain endothelial cells[J]. Fluids Barriers CNS, 2022, 19(1): 16. doi: 10.1186/s12987-022-00308-0
[14] LINDENAU K L, BARR J L, HIGGINS C R, et al. Blood-brain barrier disruption mediated by FFA1 receptor-evidence using miniscope[J]. Int J Mol Sci, 2022, 23(4): 2258. doi: 10.3390/ijms23042258
[15] THOMAS R, KERMODE A R. Enzyme enhancement therapeutics for lysosomal storage diseases: current status and perspective[J]. Mol Genet Metab, 2019, 126(2): 83-97. doi: 10.1016/j.ymgme.2018.11.011
[16] DING X W, SUN X, SHEN X F, et al. Propofol attenuates TNF-α-induced MMP-9 expression in human cerebral microvascular endothelial cells by inhibiting Ca2+/CAMK Ⅱ/ERK/NF-κB signaling pathway[J]. Acta Pharmacol Sin, 2019, 40(10): 1303-1313. doi: 10.1038/s41401-019-0258-0
[17] KUMARI R, WILLING L B, PATEL S D, et al. Increased cerebral matrix metalloprotease-9 activity is associated with compromised recovery in the diabetic db/db mouse following a stroke[J]. J Neurochem, 2011, 119(5): 1029-1040. doi: 10.1111/j.1471-4159.2011.07487.x
[18] CASH A, THEUS M H. Mechanisms of blood-brain barrier dysfunction in traumatic brain injury[J]. Int J Mol Sci, 2020, 21(9): E3344. doi: 10.3390/ijms21093344
[19] KRUEGER M, MAGES B, HOBUSCH C, et al. Endothelial edema precedes blood-brain barrier breakdown in early time points after experimental focal cerebral ischemia[J]. Acta Neuropathol Commun, 2019, 7(1): 17. doi: 10.1186/s40478-019-0671-0
[20] BRISCOE C P, TADAYYON M, ANDREWS J L, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids[J]. J Biol Chem, 2003, 278(13): 11303-11311. doi: 10.1074/jbc.M211495200
[21] HONORÉJ C, KOOLI A, HAMEL D, et al. Fatty acid receptor Gpr40 mediates neuromicrovascular degeneration induced by transarachidonic acids in rodents[J]. Arterioscler Thromb Vasc Biol, 2013, 33(5): 954-961. doi: 10.1161/ATVBAHA.112.300943
[22] XUE Y, WANG X T, WAN B L, et al. Caveolin-1 accelerates hypoxia-induced endothelial dysfunction in high-altitude cerebral edema[J]. Cell Commun Signal, 2022, 20(1): 160. doi: 10.1186/s12964-022-00976-3
[23] SWEENEY M D, ZHAO Z, MONTAGNE A, et al. Blood-brain barrier: from physiology to disease and back[J]. Physiol Rev, 2019, 99(1): 21-78. doi: 10.1152/physrev.00050.2017
[24] PANG D F, WANG L, DONG J, et al. Integrin α5β1-Ang1/Tie2 receptor cross-talk regulates brain endothelial cell responses following cerebral ischemia[J]. Exp Mol Med, 2018, 50(9): 1-12. http://www.xueshufan.com/publication/2891503140
[25] GUO P P, LIU L, YANG X, et al. Irisin improves BBB dysfunction in SAP rats by inhibiting MMP-9 via the ERK/NF-κB signaling pathway[J]. Cell Signal, 2022, 93: 110300. doi: 10.1016/j.cellsig.2022.110300
[26] BANNERMAN D D, GOLDBLUM S E. Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis[J]. Am J Physiol Lung Cell Mol Physiol, 2003, 284(6): L899-L914. doi: 10.1152/ajplung.00338.2002
[27] THEOHARIDES T C, TSILIONI I, PATEL A B, et al. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders[J]. Transl Psychiatry, 2016, 6(6): e844. doi: 10.1038/tp.2016.77
[28] LIN R G, LI M, LUO M Q, et al. Mesenchymal stem cells decrease blood-brain barrier permeability in rats with severe acute pancreatitis[J]. Cell Mol Biol Lett, 2019, 24: 43. doi: 10.1186/s11658-019-0167-8
[29] OU X F, HUA Y S, LIAO X L, et al. Cognitive impairments induced by severe acute pancreatitis are attenuated by berberine treatment in rats[J]. Mol Med Rep, 2018, 18(3): 3437-3444. http://www.spandidos-publications.com/mmr/18/3/3437/download
[30] STERNBY H, HARTMAN H, THORLACIUS H, et al. The initial course of IL-1β, IL-6, IL-8, IL-10, IL-12, IFN-γ and TNF-α with regard to severity grade in acute pancreatitis[J]. Biomolecules, 2021, 11(4): 591. doi: 10.3390/biom11040591
[31] ULLIAN E M, SAPPERSTEIN S K, CHRISTOPHERSON K S, et al. Control of synapse number by Glia[J]. Science, 2001, 291(5504): 657-661. doi: 10.1126/science.291.5504.657
[32] WU X M, YANG Z Y, WANG H Y, et al. High-mobility group box protein-1 induces acute pancreatitis through activation of neutrophil extracellular trap and subsequent production of IL-1β[J]. Life Sci, 2021, 286: 119231. doi: 10.1016/j.lfs.2021.119231
[33] YAMANAKA G, SUZUKI S, MORISHITA N, et al. Role of neuroinflammation and blood-brain barrier permutability on migraine[J]. Int J Mol Sci, 2021, 22(16): 8929. doi: 10.3390/ijms22168929
[34] VERSELE R, SEVIN E, GOSSELET F, et al. TNF-α and IL-1β modulate blood-brain barrier permeability and decrease amyloid-β peptide efflux in a human blood-brain barrier model[J]. Int J Mol Sci, 2022, 23(18): 10235. doi: 10.3390/ijms231810235
[35] LIN R G, CHEN F, WEN S, et al. Interleukin-10 attenuates impairment of the blood-brain barrier in a severe acute pancreatitis rat model[J]. J Inflamm, 2018, 15: 4. doi: 10.1186/s12950-018-0180-0
[36] SUN G H, YANG Y S, LIU Q S, et al. Pancreatic encephalopathy and wernicke encephalopathy in association with acute pancreatitis: a clinical study[J]. World J Gastroenterol, 2006, 12(26): 4224-4227. doi: 10.3748/wjg.v12.i26.4224
[37] WU X N. Current concept of pathogenesis of severe acute pancreatitis[J]. World J Gastroenterol, 2000, 6(1): 32-36. doi: 10.3748/wjg.v6.i1.32
[38] 阿依江·加马力丁, 王军红, 马青变. 重症急性胰腺炎肠道菌群变化的研究进展[J]. 中国急救医学, 2021, 41(5): 454-457. [39] 柴薪, 张西京, 方宗平. 厚朴排气合剂联合早期肠内营养治疗重症急性胰腺炎的疗效观察[J]. 空军军医大学学报, 2024, 45(6): 695-698. [40] 陈海琼, 范才波, 陈豪, 等. 针灸对早期重症急性胰腺炎肠屏障功能障碍及胃肠激素的影响[J]. 检验医学与临床, 2022, 19(17): 2370-2372. [41] AKSHINTALA V S, TALUKDAR R, SINGH V K, et al. The gut microbiome in pancreatic disease[J]. Clin Gastroenterol Hepatol, 2019, 17(2): 290-295. doi: 10.1016/j.cgh.2018.08.045
[42] 程峰, 邱兆磊, 郑传明, 等. JAK/STAT信号通路在大鼠重症急性胰腺炎早期作用机制的研究[J]. 中华全科医学, 2023, 21(1): 41-44, 65. [43] 何俊娜, 申素芳, 陈洪. 血清载脂蛋白B与载脂蛋白A比值对重症急性胰腺炎患者预后的预测价值[J]. 中国临床医生杂志, 2023, 51(9): 1029-1032. [44] 李谨, 张西京, 方宗平, 等. 布托啡诺联合右美托咪定在重症急性胰腺炎患者中的应用[J]. 空军军医大学学报, 2024, 45(1): 89-92. [45] LUO J L, CHEN Y, TANG G H, et al. Gut microbiota composition reflects disease progression, severity and outcome, and dysfunctional immune responses in patients with hypertensive intracerebral hemorrhage[J]. Front Immunol, 2022, 13: 869846. doi: 10.3389/fimmu.2022.869846
[46] DEROVS A, LAIVACUMA S, KRUMINA A. Targeting microbiota: what do we know about it at present?[J]. Medicina, 2019, 55(8): 459. doi: 10.3390/medicina55080459
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 62
- HTML全文浏览量: 9
- PDF下载量: 20
- 被引次数: 1