Research progress in microRNAs as potential biomarkers in temporal lobe epilepsy
-
摘要:
颞叶癫痫(TLE)是成人中最常见的局灶性癫痫类型, 以自发性反复发作为特征,大多数患者伴有药物耐药性和认知功能障碍。微小RNA(miRNA)通过调控转录后基因表达在TLE的病理过程中发挥关键作用。目前TLE的发病机制尚未完全阐明,缺乏有效的临床治疗靶点和预后标志物。本研究综述miRNA在TLE中的表达变化及其作为潜在生物标志物的研究进展,以期为TLE的早期诊断、预后评估以及病理机制研究提供新思路。
Abstract:Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy in adults, characterized by spontaneous recurrent seizures, with most patients experiencing drug resistance and cognitive dysfunction. MicroRNAs (miRNAs) play a critical role in the pathological process of TLE through their regulation of post-transcriptional gene expression. The pathogenesis of TLE has not been fully elucidated, lacking effective clinical therapeutic targets and prognostic markers. This review summarized the expression changes of miRNAs in TLE and their research progress as potential biomarkers, aiming to provide new insights into the early diagnosis, prognosis evaluation, and pathogenic mechanisms of TLE.
-
Keywords:
- microRNA /
- temporal lobe epilepsy /
- biomarker /
- non-coding RNA /
- differential expression /
- neuroinflammation
-
-
[1] SINGH A, TREVICK S. The epidemiology of global epilepsy[J]. Neurol Clin, 2016, 34(4): 837-847. doi: 10.1016/j.ncl.2016.06.015
[2] KWAN P, BRODIE M J. Early identification of refractory epilepsy[J]. N Engl J Med, 2000, 342(5): 314-319. doi: 10.1056/NEJM200002033420503
[3] BLAIR R D G. Temporal lobe epilepsy semiology[J]. Epilepsy Res Treat, 2012, 2012: 751510.
[4] ARONICA E, FLUITER K, IYER A, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy[J]. Eur J Neurosci, 2010, 31(6): 1100-1107. doi: 10.1111/j.1460-9568.2010.07122.x
[5] BLACK L C, SCHEFFT B K, HOWE S R, et al. The effect of seizures on working memory and executive functioning performance[J]. Epilepsy Behav, 2010, 17(3): 412-419. doi: 10.1016/j.yebeh.2010.01.006
[6] CHEN Z B, BRODIE M J, LIEW D, et al. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study[J]. JAMA Neurol, 2018, 75(3): 279-286. doi: 10.1001/jamaneurol.2017.3949
[7] KOBYLAREK D, IWANOWSKI P, LEWANDOWSKA Z, et al. Advances in the potential biomarkers of epilepsy[J]. Front Neurol, 2019, 10: 685. doi: 10.3389/fneur.2019.00685
[8] GUARNIERI L, AMODIO N, BOSCO F, et al. Circulating miRNAs as novel clinical biomarkers in temporal lobe epilepsy[J]. Noncoding RNA, 2024, 10(2): 18.
[9] HA M J, KIM V N. Regulation of microRNA biogenesis[J]. Nat Rev Mol Cell Biol, 2014, 15(8): 509-524. doi: 10.1038/nrm3838
[10] KOMATSU S, KITAI H, SUZUKI H I. Network regulation of microRNA biogenesis and target interaction[J]. Cells, 2023, 12(2): 306. doi: 10.3390/cells12020306
[11] WANG J L, ZHAO J H. MicroRNA dysregulation in epilepsy: from pathogenetic involvement to diagnostic biomarker and therapeutic agent development[J]. Front Mol Neurosci, 2021, 14: 650372. doi: 10.3389/fnmol.2021.650372
[12] REZAEE D, SAADATPOUR F, AKBARI N, et al. The role of microRNAs in the pathophysiology of human central nervous system: a focus on neurodegenerative diseases[J]. Ageing Res Rev, 2023, 92: 102090. doi: 10.1016/j.arr.2023.102090
[13] BENCUROVA P, BALOUN J, MUSILOVA K, et al. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: whole miRNome profiling of human hippocampus[J]. Epilepsia, 2017, 58(10): 1782-1793. doi: 10.1111/epi.13870
[14] SZYDLOWSKA K, BOT A, NIZINSKA K, et al. Circulating microRNAs from plasma as preclinical biomarkers of epileptogenesis and epilepsy[J]. Sci Rep, 2024, 14(1): 708. doi: 10.1038/s41598-024-51357-4
[15] BRENNAN G P, BAUER S, ENGEL T, et al. Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy[J]. Neurobiol Dis, 2020, 144: 105048. doi: 10.1016/j.nbd.2020.105048
[16] BLVMCKE I, THOM M, ARONICA E, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods[J]. Epilepsia, 2013, 54(7): 1315-1329. doi: 10.1111/epi.12220
[17] TANG C Y, WANG H Y, WU H M, et al. The microRNA expression profiles of human temporal lobe epilepsy in HS ILAE type 1[J]. Cell Mol Neurobiol, 2019, 39(3): 461-470. doi: 10.1007/s10571-019-00662-y
[18] AMIN U, BENBADIS S R. The role of EEG in the erroneous diagnosis of epilepsy[J]. J Clin Neurophysiol, 2019, 36(4): 294-297. doi: 10.1097/WNP.0000000000000572
[19] MOSHÉ S L, PERUCCA E, RYVLIN P, et al. Epilepsy: new advances[J]. Lancet, 2015, 385(9971): 884-898. doi: 10.1016/S0140-6736(14)60456-6
[20] ASADI-POOYA A A, TAJBAKHSH A, SAVARDASHTAKI A. MicroRNAs in temporal lobe epilepsy: a systematic review[J]. Neurol Sci, 2021, 42(2): 571-578. doi: 10.1007/s10072-020-05016-x
[21] LYSOVA K D, USOLTSEVA A A, DOMORATSKAYA E A, et al. MiR-134 and miR-106b are circulating biomarkers for temporal lobe epilepsy: pilot study results[J]. Russ Open Med J, 2023, 12(3): e0303. doi: 10.15275/rusomj.2023.0303
[22] VENØ M T, RESCHKE C R, MORRIS G, et al. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy[J]. Proc Natl Acad Sci USA, 2020, 117(27): 15977-15988. doi: 10.1073/pnas.1919313117
[23] WU Y F, ZHANG Y R, ZHU S X, et al. MiRNA-29a serves as a promising diagnostic biomarker in children with temporal lobe epilepsy and regulates seizure-induced cell death and inflammation in hippocampal neurons[J]. Epileptic Disord, 2021, 23(6): 823-832. doi: 10.1684/epd.2021.1331
[24] ANTÔNIO L G L, FREITAS-LIMA P, PEREIRA-DA-SILVA G, et al. Expression of microRNAs miR-145, miR-181c, miR-199a and miR-1183 in the Blood and Hippocampus of Patients with Mesial Temporal Lobe Epilepsy[J]. J Mol Neurosci, 2019, 69(4): 580-587. doi: 10.1007/s12031-019-01386-w
[25] RADHAKRISHNAN A, MENON R, THOMAS S V, et al. "Time is Brain" -How early should surgery be done in drug-resistant TLE?[J]. Acta Neurol Scand, 2018, 138(6): 531-540. doi: 10.1111/ane.13008
[26] IORIATTI E S, CIRINO M L A, LIZARTE NETO F S, et al. Expression of circulating microRNAs as predictors of diagnosis and surgical outcome in patients with mesial temporal lobe epilepsy with hippocampal sclerosis[J]. Epilepsy Res, 2020, 166: 106373. doi: 10.1016/j.eplepsyres.2020.106373
[27] SHEN C H, ZHANG Y X, ZHENG Y, et al. Expression of plasma microRNA-145-5p and its correlation with clinical features in patients with refractory epilepsy[J]. Epilepsy Res, 2019, 154: 21-25. doi: 10.1016/j.eplepsyres.2019.04.010
[28] LEONTARITI M, AVGERIS M, KATSAROU M S, et al. Circulating miR-146a and miR-134 in predicting drug-resistant epilepsy in patients with focal impaired awareness seizures[J]. Epilepsia, 2020, 61(5): 959-970. doi: 10.1111/epi.16502
[29] KOROTKOV A, MILLS J D, GORTER J A, et al. Systematic review and meta-analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy[J]. Sci Rep, 2017, 7(1): 11592. doi: 10.1038/s41598-017-11510-8
[30] VEZZANI A, FRENCH J, BARTFAI T, et al. The role of inflammation in epilepsy[J]. Nat Rev Neurol, 2011, 7(1): 31-40. doi: 10.1038/nrneurol.2010.178
[31] HUANG H, CUI G Y, TANG H, et al. Silencing of microRNA-146a alleviates the neural damage in temporal lobe epilepsy by down-regulating Notch-1[J]. Mol Brain, 2019, 12(1): 102. doi: 10.1186/s13041-019-0523-7
[32] KONG H M, WANG H L, ZHUO Z H, et al. Inhibition of miR-181a-5p reduces astrocyte and microglia activation and oxidative stress by activating SIRT1 in immature rats with epilepsy[J]. Lab Invest, 2020, 100(9): 1223-1237. doi: 10.1038/s41374-020-0444-1
[33] ZHANG W, YE F H, XIONG J, et al. Silencing of miR-132-3p protects against neuronal injury following status epilepticus by inhibiting IL-1β-induced reactive astrocyte (A1) polarization[J]. FASEB J, 2022, 36(10): e22554.
[34] CHEN M, ZHAO Q Y, EDSON J, et al. Genome-wide microRNA profiling in brain and blood samples in a mouse model of epileptogenesis[J]. Epilepsy Res, 2020, 166: 106400. doi: 10.1016/j.eplepsyres.2020.106400
[35] FAN Y H, WANG W P, LI W F, et al. MiR-15a inhibits cell apoptosis and inflammation in a temporal lobe epilepsy model by downregulating GFAP[J]. Mol Med Rep, 2020, 22(4): 3504-3512.
[36] WU X J, WANG Y J, SUN Z R, et al. Molecular expression and functional analysis of genes in children with temporal lobe epilepsy[J]. J Integr Neurosci, 2019, 18(1): 71-77.
[37] WANG Y, YANG Z Q, ZHANG K, et al. MiR-135a-5p inhibitor protects glial cells against apoptosis via targeting SIRT1 in epilepsy[J]. Exp Ther Med, 2021, 21(5): 431. doi: 10.3892/etm.2021.9848
[38] LI R X, HU J H, CAO S E. The clinical significance of miR-135b-5p and its role in the proliferation and apoptosis of hippocampus neurons in children with temporal lobe epilepsy[J]. Dev Neurosci, 2020, 42(5/6): 187-194.
[39] NIU X, ZHU H L, LIU Q, et al. MiR-194-5p serves as a potential biomarker and regulates the proliferation and apoptosis of hippocampus neuron in children with temporal lobe epilepsy[J]. J Chin Med Assoc, 2021, 84(5): 510-516.
[40] YU Y H, DU L J, ZHANG J X. Febrile seizure-related miR-148a-3p exerts neuroprotection by promoting the proliferation of hippocampal neurons in children with temporal lobe epilepsy[J]. Dev Neurosci, 2021, 43(5): 312-320.
[41] VANGOOR V R, RESCHKE C R, SENTHILKUMAR K, et al. Antagonizing increased miR-135a levels at the chronic stage of experimental TLE reduces spontaneous recurrent seizures[J]. J Neurosci, 2019, 39(26): 5064-5079.
[42] CHEN Y, WU X L, HU H B, et al. Neuronal MeCP2 in the dentate gyrus regulates mossy fiber sprouting of mice with temporal lobe epilepsy[J]. Neurobiol Dis, 2023, 188: 106346.
[43] ORGANISTA-JUÁREZ D, JIMÉNEZ A, ROCHA L, et al. Differential expression of miR-34a, 451, 1260, 1275 and 1298 in the neocortex of patients with mesial temporal lobe epilepsy[J]. Epilepsy Res, 2019, 157: 106188.
[44] ZHANG H F, LIAN Y J, XIE N C, et al. Antagomirs targeting miR-142-5p attenuate pilocarpine-induced status epilepticus in mice[J]. Exp Cell Res, 2020, 393(2): 112089.
[45] ZHU X J, ZHANG A F, DONG J D, et al. MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy[J]. Brain Res Bull, 2019, 152: 175-183.
-
期刊类型引用(10)
1. 王晶一,郑娅,史海燕. 银杏二萜内酯葡胺注射液联合调督舒筋手法对急性脑梗死患者ET-1、S100β及血液流变学的影响. 中国基层医药. 2024(11): 1693-1698 . 百度学术
2. 朱珊珊,崔丽,徐军伟. 银杏二萜内酯葡胺联合阿加曲班在急性脑梗死中的应用效果. 河南医学研究. 2023(11): 2043-2047 . 百度学术
3. 卢长岭. 银杏二萜内酯葡胺在急性缺血性脑卒中患者中的应用. 实用中西医结合临床. 2023(18): 20-22+33 . 百度学术
4. 周承升,赵浚乐. 依达拉奉联合银杏二萜内酯治疗脑梗死后功能障碍的效果. 内蒙古中医药. 2022(03): 109-111 . 百度学术
5. 张怡. 双抗与银杏二萜内酯葡胺联合替罗非班治疗小分支脑动脉闭塞引发急性脑梗死的疗效对比. 当代临床医刊. 2022(03): 66-67 . 百度学术
6. 郭娟娟. 银杏二萜内酯葡胺与阿司匹林在急性脑梗死中的治疗效果及对BI、NIHSS、QOLISP评分的影响分析. 中外医疗. 2022(09): 14-18 . 百度学术
7. 李瑾,高晓红,王玉梅. 银杏二萜内酯葡胺对脑梗死合并多发性颅内动脉狭窄的影响. 中国社区医师. 2022(19): 55-57 . 百度学术
8. 周安. 阿加曲班联合银杏二萜内酯葡胺注射液治疗后循环脑梗死的效果. 医学理论与实践. 2022(20): 3464-3466 . 百度学术
9. 孙忠发,吴剑冰,尤东阳,孙强. 银杏二萜注射液对急性脑梗死溶栓患者认知功能与血液流变学的影响. 北方药学. 2022(11): 10-12 . 百度学术
10. 李贞,蒋磊,徐维平. 242例住院患者银杏二萜内酯葡胺注射液合理用药分析. 中国药业. 2021(14): 111-113 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 83
- HTML全文浏览量: 10
- PDF下载量: 26
- 被引次数: 12