脓毒症相关肝损伤预后分析及基于机器学习方法的预测模型建立

赵云, 蒋伟, 郑瑞强, 於江泉

赵云, 蒋伟, 郑瑞强, 於江泉. 脓毒症相关肝损伤预后分析及基于机器学习方法的预测模型建立[J]. 实用临床医药杂志, 2025, 29(7): 32-37, 42. DOI: 10.7619/jcmp.20244867
引用本文: 赵云, 蒋伟, 郑瑞强, 於江泉. 脓毒症相关肝损伤预后分析及基于机器学习方法的预测模型建立[J]. 实用临床医药杂志, 2025, 29(7): 32-37, 42. DOI: 10.7619/jcmp.20244867
ZHAO Yun, JIANG Wei, ZHENG Ruiqiang, YU Jiangquan. Prognostic analysis of sepsis-related liver injury and development of a prediction model based on machine learning method[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 32-37, 42. DOI: 10.7619/jcmp.20244867
Citation: ZHAO Yun, JIANG Wei, ZHENG Ruiqiang, YU Jiangquan. Prognostic analysis of sepsis-related liver injury and development of a prediction model based on machine learning method[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 32-37, 42. DOI: 10.7619/jcmp.20244867

脓毒症相关肝损伤预后分析及基于机器学习方法的预测模型建立

基金项目: 

国家临床重点专科建设单位 176(2022)

扬州市卫生健康委员会科研重点项目 2023-1-0

详细信息
    通讯作者:

    於江泉

  • 中图分类号: R575.3;R459.7;R319

Prognostic analysis of sepsis-related liver injury and development of a prediction model based on machine learning method

  • 摘要:
    目的 

    分析脓毒症相关肝损伤(SRLI)患者的预后, 并使用8种机器学习方法建立脓毒症患者入住ICU后发生SRLI的预测模型。

    方法 

    纳入MIMIC-IV数据库中满足脓毒症诊断标准且无肝脏、胆系基础疾病的患者。根据肝酶≥5倍正常值上限(ULN)或胆红素≥2.0 mg/dL将患者分为SRLI组和非SRLI组。采用卡方检验、多因素Logistics回归分析及倾向性评分匹配法分析2组患者死亡风险。采用8种机器学习算法[Logistics回归、分类回归树(CART)、随机森林(RF)、支持向量机(SVM)、K-近邻(K-NN)、朴素贝叶斯(NBM)、极端梯度提升(XGBoost)、梯度提升树(GBDT)]构建SRLI预测模型并进行验证。

    结果 

    卡方检验(P < 0.001)、多因素Logistics回归分析(P < 0.05)、倾向性评分匹配分析后Log-rank (P < 0.05)均显示SRLI增加患者死亡风险。SRLI预测模型中, RF算法的曲线下面积(AUC)最高为0.866, 其后依次是GBDT (AUC=0.862)、Logistics回归(AUC=0.859)、SVM (AUC=0.837)、NBM (AUC=0.830)、CART (AUC=0.771)、XGBoost (AUC=0.764)、K-NN (AUC=0.722)。

    结论 

    SRLI增加患者死亡风险。RF算法构建预测模型有较高的诊断价值。

    Abstract:
    Objective 

    To analyze the prognosis of patients with sepsis-related liver injury (SRLI) and establish a prediction model for the occurrence of SRLI after ICU admission in sepsis patients using eight machine learning methods.

    Methods 

    Patients who met the sepsis diagnostic criteria and had no underlying liver or biliary diseases were included from the MIMIC-IV database, and were classified into SRLI and non-SRLI groups based on liver enzymes ≥5 times the upper limit of normal (ULN) or bilirubin ≥2.0mg/dL. Chi-square test, multivariate Logistic regression analysis, and propensity score matching were used to analyze the mortality risk between the two groups. Eight machine learning algorithms[Logistic regression, classification and regression tree (CART), random forest (RF), support vector machine (SVM), K-nearest neighbors (K-NN), naive Bayes method (NBM), extreme gradient boosting (XGBoost), and gradient boosting decision tree (GBDT)]were employed to construct and validate the SRLI prediction model.

    Results 

    The chi-square test (P < 0.001), multivariate Logistic regression analysis (P < 0.05), and log-rank test after propensity score matching (P < 0.05) all indicated that SRLI increased the mortality risk of patients. Among the SRLI prediction models, RF algorithm had the highest area under the curve (AUC), with its value of 0.866, followed by GBDT (AUC=0.862), Logistic regression (AUC=0.859), SVM (AUC=0.837), NBM (AUC=0.830), CART (AUC=0.771), XGBoost (AUC=0.764), and K-NN (AUC=0.722).

    Conclusion 

    SRLI increases the mortality risk of patients. The prediction model constructed using the RF algorithm has high diagnostic value.

  • 图  1   患者筛选流程

    图  2   研究流程图

    SRLI: 脓毒症相关性肝损伤; ICU: 重症监护室; CART: 分类与回归树模型; RF: 随机森林模型; SVM: 支持向量机模型; K-NN: K-近邻模型; NBM: 朴素贝叶斯模型; XGBoost: 极端梯度提升模型; GBDT: 梯度提升树模型。

    图  3   倾向性匹配分析后生存曲线

    图  4   8种机器学习模型的ROC曲线

    RF: 随机森林模型; GBDT: 梯度提升树模型; SVM: 支持向量机模型; NBM: 朴素贝叶斯模型; CART: 分类与回归树模型; XGBoost: 极端梯度提升模型; K-NN: K-近邻模型。

    图  5   机器学习模型预测SRLI的DCA曲线

    RF: 随机森林模型; GBDT: 梯度提升树模型; SVM: 支持向量机模型; NBM: 朴素贝叶斯模型; CART: 分类与回归树模型; XGBoost: 极端梯度提升模型; K-NN: K-近邻模型。

    图  6   随机森林模型预测SRLI前12项特征的重要性得分

    Change_TBIL: 入ICU 24 h内总胆红素改变值; Change_AST: 入ICU 24 h内谷草转氨酶改变值; Change_ALT: 入ICU 24 h内谷丙转氨酶改变值; TBIL_ad: 入ICU时胆红素值; PLT: 血小板; ALT_ad: 入ICU时谷丙转氨酶; SAPS-Ⅲ: 简化急性; 生理功能评分AST_ad: 入ICU时谷草转氨酶; Ventil: 机械通气; Vaso-time: 血管活性药物使用时间; pH: 酸碱度; Albumin: 白蛋白。

    表  1   SRLI组与非SRLI组基线资料比较[n(%)][M(QL, QU)]

    因素 非SRLI组(n=6 559) SRLI组(n=2 080) t/χ2/Z P
    男性 3 600(54.89) 1 254(60.29) 19.00 < 0.001
    年龄/岁 70.27(58.04, 81.27) 65.83(52.88, 77.14) 46.68 < 0.001
    BMI/(kg/m2) 26.87(23.30, 31.87) 27.57(23.95, 32.41) 52.82 < 0.001
    GCS评分/分 14.00(9.00, 15.00) 13.00(7.00, 15.00) 48.70 < 0.001
    MBP/mmHg 58.00(51.00, 64.00) 56.00(47.00, 63.00) 48.14 < 0.001
    心率/(次/min) 105.00(91.00, 120.00) 112.00(97.00, 128.00) 55.82 < 0.001
    呼吸频率/(次/min) 28.00(24.00, 32.50) 29.00(25.00, 34.00) 54.03 < 0.001
    体温/℃ 36.44(36.11, 36.72) 36.40(35.72, 36.72) 48.31 < 0.001
    SpO2/% 92.00(90.00, 95.00) 92.00(88.00, 94.00) 48.71 < 0.001
    SOFA/分 3.00(2.00, 4.00) 4.00(2.00, 6.00) 59.02 < 0.001
    SAPS-Ⅲ/分 51.00(38.00, 67.00) 67.00(48.00, 91.00) 60.77 < 0.001
    因素 分类 非SRLI组(n=6 559) SRLI组(n=2 080) t/χ2/Z P
    24 h液体量/mL 1 820.41(927.39, 3 009.11) 2 777.71(1 452.49, 4 445.51) 59.17 < 0.001
    机械通气 3 215(49.02) 1 422(68.37) 237.00 < 0.001
    VDI/(μg/min) 0(0, 0.10) 0.10(0, 0.50) 59.22 < 0.001
    休克 1 390(21.19) 965(46.39) 505.00 < 0.001
    CHF 2 101(32.03) 748(35.96) 11.00 0.001
    COPD 1 776(27.08) 491(23.60) 9.70 0.002
    CRD 1 654(25.22) 423(20.34) 20.00 < 0.001
    肿瘤 978(14.91) 329(15.82) 0.94 0.332
    糖尿病 2 105(32.09) 546(26.25) 25.00 < 0.001
    Charlson共病指数 5.00(3.00, 8.00) 6.00(4.00, 8.00) 48.53 < 0.001
    感染源 肺部 1 403(21.39) 454(21.83) 12.00 0.014
    腹腔 373(5.69) 110(5.29)
    泌尿系 1 001(15.26) 256(12.31)
    皮肤软组织 59(0.90) 21(1.01)
    其他 3 723(56.76) 1 239(59.57)
    实验室检查 乳酸/(mmol/L) 1.70(1.20, 2.80) 3.05(1.70, 5.93) 62.28 < 0.001
    pH 7.35(7.28, 7.41) 7.28(7.18, 7.37) 42.29 < 0.001
    pa(O2)/mmHg 80.00(63.00, 109.00) 75.00(60.00, 98.00) 48.00 < 0.001
    pa(CO2)/mmHg 43.00(37.00, 50.00) 45.00(38.00, 54.00) 53.58 < 0.001
    HCT/% 30.40(25.90, 34.90) 29.40(24.30, 34.73) 48.78 < 0.001
    血红蛋白/(g/dL) 10.00(8.50, 11.55) 9.70(8.00, 11.50) 49.24 < 0.001
    血小板/(×109/L) 181.00(129.00, 249.00) 141.00(87.00, 203.00) 43.10 < 0.001
    白细胞/(×109/L) 13.60(9.70, 18.70) 15.80(10.60, 21.40) 54.75 < 0.001
    白蛋白/(g/L) 3.20(2.70, 3.60) 3.00(2.50, 3.50) 45.77 < 0.001
    尿素氮/(mmol/L) 25.00(16.00, 41.00) 29.00(18.00, 46.25) 54.24 < 0.001
    肌酐/(mg/dL) 1.20(0.90, 1.90) 1.50(1.00, 2.40) 56.20 < 0.001
    PT/s 14.20(12.70, 16.60) 15.80(13.60, 20.73) 58.45 < 0.001
    APTT/s 31.80(27.70, 41.60) 37.20(30.30, 65.13) 58.35 < 0.001
    ALT-ad/(U/L) 21.00(14.00, 34.00) 70.00(28.00, 190.25) 68.57 < 0.001
    AST-ad/(U/L) 29.00(20.00, 45.00) 130.00(45.00, 301.00) 70.48 < 0.001
    TBIL-ad/(mg/dL) 0.50(0.30, 0.80) 0.90(0.50, 1.90) 63.39 < 0.001
    SRLI: 脓毒症相关肝损伤; BMI: 体质量指数; GCS: 格拉斯哥昏迷评分; MBP: 平均动脉压; SpO2: 血氧饱和度; SOFA: 序贯器官衰竭评分; SAPS-Ⅲ: 简化急性生理功能评分; VDI: 血管活性药物强度; CHF: 慢性心功能不全; COPD: 慢性阻塞性肺疾病; CRD: 慢性肾功能不全; pH: 酸碱度; pa(O2): 动脉血氧分压; pa(CO2): 动脉血二氧化碳分压; HCT: 红细胞压积; PT: 凝血酶原时间; APTT: 活化部分凝血活酶时间; ALT-ad: 入ICU时谷丙转氨酶; AST-ad: 入ICU时谷草转氨酶; TBIL-ad: 入ICU时总胆红素。1 mmHg=0.133 kPa。
    下载: 导出CSV

    表  2   SRLI组与非SRLI组患者预后比较[n(%)][M(QL, QU)]

       预后指标 非SRLI组(n=6 559) SRLI组(n=2 080) t/χ2/Z P
    急性肾损伤 4 585(69.90) 1 726(82.98) 137.00 < 0.001
    机械通气时间/d 0(0, 1.50) 1.20(0, 4.04) 58.99 < 0.001
    血管活性药物使用时间/h 0(0, 12.92) 7.52(0, 49.67) 58.66 < 0.001
    住院时间/d 7.80(4.78, 13.54) 10.10(5.17, 19.07) 55.13 < 0.001
    入住ICU时间/d 2.97(1.71, 5.86) 4.33(2.16, 9.57) 56.89 < 0.001
    28 d死亡 1 316(20.06) 681(32.74) 142.00 < 0.001
    住院死亡 1 003(15.29) 651(31.30) 260.00 < 0.001
    下载: 导出CSV

    表  3   机器学习模型预测效能

    模型 AUC 准确度 精确度 召回率 F1得分
    RF 0.866 0.842 0.950 0.388 0.551
    GBDT 0.862 0.843 0.816 0.483 0.607
    Logistics 0.859 0.855 0.852 0.510 0.638
    SVM 0.837 0.830 0.776 0.449 0.569
    NBM 0.830 0.809 0.973 0.245 0.391
    CART 0.771 0.814 0.694 0.463 0.555
    XGBoost 0.764 0.809 0.688 0.435 0.533
    K-NN 0.722 0.772 0.610 0.245 0.350
    RF: 随机森林模型; GBDT: 梯度提升树模型; SVM: 支持向量机模型; NBM: 朴素贝叶斯模型; CART: 分类与回归树模型; XGBoost: 极端梯度提升模型; K-NN: K-近邻模型。
    下载: 导出CSV
  • [1]

    EVANS L, RHODES A, ALHAZZANI W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11): 1181-1247. doi: 10.1007/s00134-021-06506-y

    [2] 邢冬梅, 隋冰冰, 王磊. 老年脓毒症患者住院期间死亡风险预测模型的建立与验证[J]. 实用临床医药杂志, 2024, 28(8): 39-44. doi: 10.7619/jcmp.20233722
    [3]

    DHAINAUT J F, MARIN N, MIGNON A, et al. Hepatic response to sepsis: interaction between coagulation and inflammatory processes[J]. Crit Care Med, 2001, 29(7 Suppl): S42-S47.

    [4]

    PEREZ RUIZ DE GARIBAY A, KORTGEN A, LEONHARDT J, et al. Critical care hepatology: definitions, incidence, prognosis and role of liver failure in critically ill patients[J]. Crit Care, 2022, 26(1): 289. doi: 10.1186/s13054-022-04163-1

    [5]

    VAN DEN BROECKE A, VAN COILE L, DECRUYENAERE A, et al. Epidemiology, causes, evolution and outcome in a single-center cohort of 1116 critically ill patients with hypoxic hepatitis[J]. Ann Intensive Care, 2018, 8(1): 15. doi: 10.1186/s13613-018-0356-z

    [6]

    KOBASHI H, TOSHIMORI J, YAMAMOTO K. Sepsis-associated liver injury: incidence, classification and the clinical significance[J]. Hepatol Res, 2013, 43(3): 255-266. doi: 10.1111/j.1872-034X.2012.01069.x

    [7]

    LEVY M M, EVANS L E, RHODES A. The surviving sepsis campaign bundle: 2018 update[J]. Intensive Care Med, 2018, 44(6): 925-928. doi: 10.1007/s00134-018-5085-0

    [8]

    SEYMOUR C W, LIU V X, IWASHYNA T J, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 762-774. doi: 10.1001/jama.2016.0288

    [9]

    HU W H, CHEN H, MA C C, et al. Identification of indications for albumin administration in septic patients with liver cirrhosis[J]. Crit Care, 2023, 27(1): 300. doi: 10.1186/s13054-023-04587-3

    [10]

    WANG D W, YIN Y M, YAO Y M. Advances in sepsis-associated liver dysfunction[J]. Burns Trauma, 2014, 2(3): 97-105. doi: 10.4103/2321-3868.132689

    [11]

    HORVATITS T, DROLZ A, TRAUNER M, et al. Liver injury and failure in critical illness[J]. Hepatology, 2019, 70(6): 2204-2215. doi: 10.1002/hep.30824

    [12]

    JONSDOTTIR S, ARNARDOTTIR M B, ANDRESSON J A, et al. Prevalence, clinical characteristics and outcomes of hypoxic hepatitis in critically ill patients[J]. Scand J Gastroenterol, 2022, 57(3): 311-318. doi: 10.1080/00365521.2021.2005136

    [13] 孙维维, 黄晓英, 王亚东. HELENICC评分预测脓毒症相关急性肾损伤行持续肾脏替代治疗患者早期病死率的价值[J]. 实用临床医药杂志, 2023, 27(15): 29-34. doi: 10.7619/jcmp.20231689
    [14]

    WOZNICA E A, INGLOT M, WOZNICA R K, et al. Liver dysfunction in sepsis[J]. Adv Clin Exp Med, 2018, 27(4): 547-551. doi: 10.17219/acem/68363

    [15]

    GINÈS P, SCHRIER R W. Renal failure in cirrhosis[J]. N Engl J Med, 2009, 361(13): 1279-1290. doi: 10.1056/NEJMra0809139

    [16]

    XIE T H, XIN Q, CAO X R, et al. Clinical characteristics and construction of a predictive model for patients with sepsis related liver injury[J]. Clin Chim Acta, 2022, 537: 80-86. doi: 10.1016/j.cca.2022.10.004

    [17]

    DAI J M, GUO W N, TAN Y Z, et al. Wogonin alleviates liver injury in sepsis through Nrf2-mediated NF-κB signalling suppression[J]. J Cell Mol Med, 2021, 25(12): 5782-5798. doi: 10.1111/jcmm.16604

    [18]

    HUANG H, TOHME S, AL-KHAFAJI A B, et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury[J]. Hepatology, 2015, 62(2): 600-614. doi: 10.1002/hep.27841

  • 期刊类型引用(6)

    1. 郝俐,郑志龙. 可溶性髓系细胞触发受体1、乳酸对难治性支原体肺炎患儿预后的影响. 实用心脑肺血管病杂志. 2025(02): 16-19 . 百度学术
    2. 严秋丽,张方园,陈颖青,施金金,钮文思. 新型指标HROX指数在儿童重症肺炎早期诊治中的应用价值研究. 中国临床新医学. 2024(08): 881-885 . 百度学术
    3. 史小慧,曾晓兵,康莉莉,张筱婷. 儿童重症肺炎进展风险预测模型构建. 赤峰学院学报(自然科学版). 2024(08): 13-17 . 百度学术
    4. 王晓,张玉玲. 婴儿社区获得性肺炎进展为重症肺炎预警指标的研究现状. 妇儿健康导刊. 2024(19): 21-24 . 百度学术
    5. 宫秀娟,赵慧霞,张小庆,张连霞. 重症社区获得性肺炎患者PIV、IL-6、HBP、PAB水平对疗效的评估价值. 天津医药. 2024(11): 1216-1220 . 百度学术
    6. 韩萍萍,刘娅. 静脉滴注人免疫球蛋白辅助治疗对小儿重症肺炎的临床疗效. 深圳中西医结合杂志. 2024(20): 83-86 . 百度学术

    其他类型引用(1)

图(6)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 7
出版历程
  • 收稿日期:  2024-10-15
  • 修回日期:  2024-12-23
  • 刊出日期:  2025-04-14

目录

    /

    返回文章
    返回