Effects of celastrol on renal oxidative stress in high-fat-induced obese mice
-
摘要:目的
探讨雷公藤红素调节高脂饮食诱导肥胖小鼠肾脏氧化应激的作用及可能的作用机制。
方法将24只雄性C57BL/6小鼠分为正常对照组、模型对照组和雷公藤红素组, 每组8只。将正常对照组小鼠以普通饲料喂养, 模型对照组、雷公藤红素组小鼠以高脂饲料喂养12周建立高脂诱导肥胖小鼠模型; 连续21 d对雷公藤红素组小鼠腹腔注射雷公藤红素100 μg/(kg·d), 另2组小鼠腹腔注射等体积生理盐水。观察各组小鼠体质量和空腹血糖、葡萄糖耐量、胰岛素耐量情况, 采用实时荧光定量聚合酶链反应(RT-qPCR)法检测各组小鼠肾脏Kelch样环氧氯丙烷相关蛋白1(Keap1)、核因子E2相关因子2(Nrf2)、过氧化物酶体增殖物激活受体γ共激活因子1α(PGC-1α)mRNA表达水平, 采用免疫印迹法(Western blot)检测各组小鼠肾脏Keap1、Nrf2、PGC-1α蛋白表达水平。
结果模型对照组小鼠体质量、空腹血糖水平高于正常对照组, 而雷公藤红素组低于模型对照组, 差异有统计学意义(P < 0.05)。药物干预期间, 模型对照组小鼠摄食量高于正常对照组, 而雷公藤红素组低于模型对照组, 差异有统计学意义(P < 0.05)。葡萄糖耐量、胰岛素耐量试验结果显示, 模型对照组各时点血糖水平高于正常对照组, 而雷公藤红素组血糖水平低于模型对照组, 差异有统计学意义(P < 0.05)。模型对照组小鼠肾脏Nrf2、PGC-1α mRNA和Nrf2、PGC-1α蛋白表达水平低于正常对照组, Keap1 mRNA和Keap1蛋白表达水平高于正常对照组, 差异有统计学意义(P < 0.05); 雷公藤红素组小鼠肾脏Nrf2、PGC-1α mRNA和Nrf2、PGC-1α蛋白表达水平高于模型对照组, Keap1 mRNA和Keap1蛋白表达水平低于模型对照组, 差异有统计学意义(P < 0.05)。
结论雷公藤红素能够改善高脂饮食诱导肥胖小鼠的糖代谢, 使小鼠体质量及摄食量下降, 起到抗炎、抗氧化应激作用, 改善肾脏损伤, 其机制可能与肾脏Keap1/Nrf2/PGC-1α信号通路有关。
Abstract:ObjectiveTo investigate the effects and possible mechanisms of action of celastrol in regulating renal oxidative stress in high-fat diet-induced obese mice.
MethodsTwenty-four male C57BL/6 mice were equally divided into normal control group, model control group and celastrol group, with 8 mice in each group. The mice in the normal control group were fed with normal diet, while those in the model control group and celastrol group were fed with high-fat diet for 12 weeks to establish a high-fat induced obesity mouse model. Subsequently, the mice in the celastrol group were injected intraperitoneally with celastrol 100 μg/(kg·d) for 21 d. The mice in the remaining two groups were injected intraperitoneally with an equal volume of saline. Body weight, fasting blood glucose, glucose tolerance and insulin tolerance were observed in these groups. The mRNA expression levels of renal Kelch-like epichlorohydrin-associated protein 1(Keap1), nuclear factor E2-related factor 2(Nrf2) and peroxisome proliferator-activated receptor γcoactivator 1α(PGC-1α) were detected by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). The protein levels of renal Keap1, Nrf2 and PGC-1α were detected by western blot method.
ResultsThe body weight and fasting blood glucose level of model control group were higher than that of normal control group, while were lower in the celastrol group than those of the model control group (P < 0.05). During drug intervention, the food intake of mice in the model control group was higher than that in the normal control group, while was lower in the celastrol group than that in model control group (P < 0.05). The results of glucose tolerance and insulin tolerance test showed that the blood glucose level of the model control group was higher than those of normal control group at each time point, while the blood glucose level of the celastrol group was lower than that of model control group (P < 0.05). Renal PGC-1α and Nrf2 gene expression and their protein levels were significantly lower than those of the normal control group, while Keap1 mRNA and Keap1 protein level were higher than those in the model control group(P < 0.05). The Nrf2 and PGC-1α mRNA in the kidney and expression levels of Nrf2 and PGC-1α protein of the celastrol group were higher than those of model control group, while expression levels of Keap1 mRNA and Keap1 protein of the celastrol group were lower than those of model control group (P < 0.05).
ConclusionCelastrol can improve glucose metabolism, reduce body weight and food intake in high-fat diet-induced obese mice, play anti-inflammatory and anti-oxidative stress roles, and ameliorate renal injury. Its mechanism may be related to the renal Keap1/Nrf2/PGC-1α pathway.
-
Keywords:
- diabetes /
- obesity /
- celastrol /
- kidney /
- oxidative stress /
- Keap1/Nrf2/PGC-1α signaling pathway
-
-
表 1 引物序列
名称 引物类型 引物序列 GAPDH 正向引物 5′-AGAACATCATCCCTGCATCC-3′ 反向引物 5′-TCCACCACCCTGTTGCTGTA-3′ Keap1 正向引物 5′-TGCCCCTGTGGTCAAAGTG-3′ 反向引物 5′-GGTTCGGTTACCGTCCTGC-3′ Nrf2 正向引物 5′-CTGAACTCCTGGACGGGACTA-3′ 反向引物 5′-CGGTGGGTCTCCGTAAATGG-3′ PGC-1α 正向引物 5′-ACCATGACTACTGTCAGTCACTC-3′ 反向引物 5′-GTCACAGGAGGCATCTTTGAAG-3′ 表 2 3组小鼠体质量、摄食量和空腹血糖水平比较(x±s)
组别 n 体质量/g 摄食量/g 空腹血糖/(mmol/L) 正常对照组 8 26.45±1.28 69.18±9.34 5.74±0.87 模型对照组 8 36.53±2.52* 81.30±7.81* 8.08±1.26* 雷公藤红素组 8 28.88±1.51# 64.83±6.67# 6.81±0.58# 与正常对照组比较, *P < 0.05; 与模型对照组比较, #P < 0.05。 -
[1] ZHENG Y, LEY S H, HU F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2): 88-98. doi: 10.1038/nrendo.2017.151
[2] SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119. doi: 10.1016/j.diabres.2021.109119
[3] THIPSAWAT S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: a review of the literature[J]. Diab Vasc Dis Res, 2021, 18(6): 14791641211058856.
[4] 韩浩川, 张曦. 糖尿病肾病的发病机制研究[J]. 医学信息, 2021, 34(7): 39-43. doi: 10.3969/j.issn.1006-1959.2021.07.011 [5] 陈海兰, 许少华, 徐伟, 等. 雷公藤红素药理活性与结构修饰研究进展[J]. 药学研究, 2020, 39(12): 722-732. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYG202012010.htm [6] XU S H, FENG Y Q, HE W S, et al. Celastrol in metabolic diseases: progress and application prospects[J]. Pharmacol Res, 2021, 167: 105572. doi: 10.1016/j.phrs.2021.105572
[7] LIU J L, LEE J, SALAZAR HERNANDEZ M A, et al. Treatment of obesity with celastrol[J]. Cell, 2015, 161(5): 999-1011. doi: 10.1016/j.cell.2015.05.011
[8] 周永强, 周维, 岳兰昕, 等. 雷公藤红素参与脂质代谢调控的研究进展[J]. 医药导报, 2021, 40(5): 587-592. https://www.cnki.com.cn/Article/CJFDTOTAL-YYDB202112020.htm [9] 郝军荣, 牛红双, 刘宜周, 等. 氧化应激在糖尿病肾病中的作用及抗氧化治疗研究进展[J]. 神经药理学报, 2020, 10(2): 33-38. doi: 10.3969/j.issn.2095-1396.2020.02.007 [10] KIAEI M, KIPIANI K, PETRI S, et al. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis[J]. Neurodegener Dis, 2005, 2(5): 246-254. doi: 10.1159/000090364
[11] FANG P H, HE B, YU M, et al. Treatment with celastrol protects against obesity through suppression of galanin-induced fat intake and activation of PGC-1α/GLUT4 axis-mediated glucose consumption[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(6): 1341-1350. doi: 10.1016/j.bbadis.2019.02.002
[12] GARIANI K, MARQUES-VIDAL P, WAEBER G, et al. Salivary cortisol is not associated with incident insulin resistance or type 2 diabetes mellitus[J]. Endocr Connect, 2019, 8(7): 870-877. doi: 10.1530/EC-19-0251
[13] ABU BAKAR M H, SHARIFF K A, TAN J S, et al. Celastrol attenuates inflammatory responses in adipose tissues and improves skeletal muscle mitochondrial functions in high fat diet-induced obese rats via upregulation of AMPK/SIRT1 signaling pathways[J]. Eur J Pharmacol, 2020, 883: 173371. doi: 10.1016/j.ejphar.2020.173371
[14] HU W Y, WANG L L, DU G Z, et al. Effects of microbiota on the treatment of obesity with the natural product celastrol in rats[J]. Diabetes Metab J, 2020, 44(5): 747-763. doi: 10.4093/dmj.2019.0124
[15] SHI Y J, ZHANG W X, CHENG Y L, et al. Bromide alleviates fatty acid-induced lipid accumulation in mouse primary hepatocytes through the activation of PPARα signals[J]. J Cell Mol Med, 2019, 23(6): 4464-4474. doi: 10.1111/jcmm.14347
[16] 付俊敏, 周禹, 张天泰. 雷公藤红素治疗肥胖的研究进展[J]. 中国药学杂志, 2020, 55(4): 293-297. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX202004005.htm [17] LUO D, GUO Y M, CHENG Y Y, et al. Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-κB pathways[J]. Aging, 2017, 9(10): 2069-2082. doi: 10.18632/aging.101302
[18] VASHI R, PATEL B M. NRF2 in cardiovascular diseases: a Ray of hope[J]. J Cardiovasc Transl Res, 2021, 14(3): 573-586. doi: 10.1007/s12265-020-10083-8
[19] CUI B, ZHANG S L, WANG Y T, et al. Farrerol attenuates β-amyloid-induced oxidative stress and inflammation through Nrf2/Keap1 pathway in a microglia cell line[J]. Biomed Pharmacother, 2019, 109: 112-119. doi: 10.1016/j.biopha.2018.10.053
[20] 徐小惠, 黄英华, 陈铭, 等. 葛根素通过SIRT1/PGC-1α信号通路对2型糖尿病小鼠胰腺线粒体的氧化应激损伤保护作用的研究[J]. 中国药理学通报, 2020, 36(10): 1373-1379. https://www.cnki.com.cn/Article/CJFDTOTAL-YAOL202010009.htm [21] CAO F F, WANG Y, PENG B, et al. Effects of celastrol on Tau hyperphosphorylation and expression of HSF-1 and HSP70 in SH-SY5Y neuroblastoma cells induced by amyloid-β peptides[J]. Biotechnol Appl Biochem, 2018, 65(3): 390-396.
[22] SONG Y F, HOGSTRAND C, LING S C, et al. Creb-Pgc1α pathway modulates the interaction between lipid droplets and mitochondria and influences high fat diet-induced changes of lipid metabolism in the liver and isolated hepatocytes of yellow catfish[J]. J Nutr Biochem, 2020, 80: 108364.
[23] ZHAN X J, YAN C X, CHEN Y B, et al. Celastrol antagonizes high glucose-evoked podocyte injury, inflammation and insulin resistance by restoring the HO-1-mediated autophagy pathway[J]. Mol Immunol, 2018, 104: 61-68.
[24] CHEN S, LIU S, ZHAO L, et al. Heme oxygenase-1-mediated autophagy protects against oxidative damage in rat nucleus pulposus-derived mesenchymal stem cells[J]. Oxid Med Cell Longev, 2020, 2020: 9349762.
[25] 王艳锋. 雷公藤多甙联合前列地尔治疗糖尿病肾病患者的疗效分析[J]. 实用临床医药杂志, 2021, 25(16): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-XYZL202116015.htm -
期刊类型引用(8)
1. 徐丽娜,任思思,李焱,李国峰. PI联合CitH3及PCSK9在脓毒性休克患者预后评估中的价值. 广东医学. 2025(02): 256-260 . 百度学术
2. 黄玉慧,张岩,范春芝,徐金玉,张丽,葛辉玉. 肾动脉阻力指数联合肺动脉高压对脓毒症患者死亡风险的预测价值. 军事医学. 2024(03): 225-229 . 百度学术
3. 陈帅,黄藏典,涂鹏声,张俊榕,陈先强. 老年上消化道穿孔患者预后新型评估系统的建立及应用. 临床急诊杂志. 2024(05): 239-245 . 百度学术
4. 陈启龙,刘正东,周树生. PCT联合eSOFA评分对脓毒症患者预后的预测价值. 临床误诊误治. 2022(01): 57-61+66 . 百度学术
5. 韩天勇,程涛,何亚荣,刘伯夫,谷志寒,廖叶,曹钰. 急性生理学评分对老年脓毒症患者院内死亡风险的预测价值. 医学研究杂志. 2022(02): 33-37 . 百度学术
6. 贾璇,潘郭海容,田圆,王瀚黎,梁群. 肠道微生物群在脓毒症中作用的研究进展. 实用临床医药杂志. 2022(14): 125-129+143 . 本站查看
7. 李娜,王丽娟,张莉莉. 血清H-FABP、IL-9、s TREM-1水平对重症脓毒症休克患者预后的评估价值. 实验与检验医学. 2021(06): 1564-1567+1623 . 百度学术
8. 袁超,宋慧慧. 急性生理与慢性健康状况评分与序贯器官衰竭评估对脓毒症患者的预后预测价值. 护理实践与研究. 2020(21): 70-72 . 百度学术
其他类型引用(2)