支气管哮喘与骨密度因果关联的孟德尔随机化分析

刘莲莲, 于会勇, 李磊, 郭雨菲, 聂天旸, 满天, 位式祥, 谢楚溪, 陈天韵, 王成祥

刘莲莲, 于会勇, 李磊, 郭雨菲, 聂天旸, 满天, 位式祥, 谢楚溪, 陈天韵, 王成祥. 支气管哮喘与骨密度因果关联的孟德尔随机化分析[J]. 实用临床医药杂志, 2024, 28(14): 24-29. DOI: 10.7619/jcmp.20241383
引用本文: 刘莲莲, 于会勇, 李磊, 郭雨菲, 聂天旸, 满天, 位式祥, 谢楚溪, 陈天韵, 王成祥. 支气管哮喘与骨密度因果关联的孟德尔随机化分析[J]. 实用临床医药杂志, 2024, 28(14): 24-29. DOI: 10.7619/jcmp.20241383
LIU Lianlian, YU Huiyong, LI Lei, GUO Yufei, NIE Tianyang, MAN Tian, WEI Shixiang, XIE Chuxi, CHEN Tianyun, WANG Chengxiang. Mendelian randomization analysis of the causal association between bronchial asthma and bone mineral density[J]. Journal of Clinical Medicine in Practice, 2024, 28(14): 24-29. DOI: 10.7619/jcmp.20241383
Citation: LIU Lianlian, YU Huiyong, LI Lei, GUO Yufei, NIE Tianyang, MAN Tian, WEI Shixiang, XIE Chuxi, CHEN Tianyun, WANG Chengxiang. Mendelian randomization analysis of the causal association between bronchial asthma and bone mineral density[J]. Journal of Clinical Medicine in Practice, 2024, 28(14): 24-29. DOI: 10.7619/jcmp.20241383

支气管哮喘与骨密度因果关联的孟德尔随机化分析

基金项目: 

国家自然科学基金面上项目 82074389

详细信息
    通讯作者:

    王成祥, E-mail: wang601@vip.sina.com

  • 中图分类号: R562.2;R322.7;R681

Mendelian randomization analysis of the causal association between bronchial asthma and bone mineral density

  • 摘要:
    目的 

    采用两样本孟德尔随机化(MR)方法探讨支气管哮喘与不同部位骨密度的因果关联。

    方法 

    从不同的全基因组关联分析研究中分别获取暴露因素和结局的汇总数据,选取与支气管哮喘强相关的单核苷酸多态性作为工具变量,并去除连锁不平衡者。采用逆方差加权法(IVW)作为MR分析的主要方法,并采用加权中位数法、简单模型、加权模型和MR-Egger回归方法进行补充,通过敏感性分析评估结果的稳定性。

    结果 

    IVW的随机效应模型分析结果显示,跟骨骨密度(OR=0.986,95% CI:0.974~0.998,P=0.023)作为结局数据集,与支气管哮喘存在反向因果效应,腰椎骨密度(OR=1.031,95% CI:0.984~1.081,P=0.195)、股骨颈骨密度(OR=1.014,95% CI:0.973~1.057,P=0.505)、前臂骨密度(OR=1.011,95% CI:0.935~1.094,P=0.775)作为结局数据集,与支气管哮喘无因果效应。MR-Egger截距检验结果显示,腰椎骨密度、股骨颈骨密度、前臂骨密度、跟骨骨密度截距的P>0.05,表明不存在水平多效性,结果较稳定。

    结论 

    MR分析显示支气管哮喘与跟骨骨密度存在反向因果效应,临床医师应加强对支气管哮喘患者跟骨骨密度的监测,以便及时发现并干预骨质疏松症。

    Abstract:
    Objective 

    To investigate the causal association between bronchial asthma and bone mineral density at different sites using a two-sample Mendelian randomization (MR) approach.

    Methods 

    Summary data for exposure factors and outcome were obtained from different genome-wide association studies.Single nucleotide polymorphisms strongly associated with bronchial asthma were selected as instrumental variables,and those in linkage disequilibrium were excluded.The inverse-variance weighted (IVW) method was used as the primary method for MR analysis,complemented by weighted median,simple mode,weighted mode,and MR-Egger regression methods.Sensitivity analyses were conducted to assess the stability of the results.

    Results 

    The random-effects model of IVW analysis showed that heel bone mineral density (OR=0.986;95% CI,0.974 to 0.998;P=0.023) as the outcome dataset had a reverse causal effect with bronchial asthma,while lumbar spine bone mineral density (OR=1.031;95% CI,0.984 to 1.081;P=0.195),femoral neck bone mineral density (OR=1.014;95% CI,0.973 to 1.057;P=0.505),and forearm bone mineral density (OR=1.011;95% CI,0.935 to 1.094;P=0.775) as outcome datasets showed no causal effect with bronchial asthma.The MR-Egger intercept test results indicated that the P-values for the intercepts of lumbar bone mineral density,femoral neck bone mineral density,forearm bone mineral density,and calcaneal bone mineral density were all over 0.05,suggesting no horizontal pleiotropy and relatively stable results.

    Conclusion 

    MR analysis reveals a reverse causal effect between bronchial asthma and heel bone mineral density,suggesting that clinicians should strengthen the monitoring of heel bone mineral density in patients with bronchial asthma to timely detect and intervene osteoporosis.

  • 图  1   支气管哮喘对不同部位骨密度影响的孟德尔随机化分析留一法敏感性分析图

    图  2   支气管哮喘对不同部位骨密度影响的孟德尔随机化分析漏斗图

    表  1   GWAS汇总数据信息

    暴露因素/结局 数据公布年份 样本种族来源 单核苷酸多态性数量/个 样本量/例 数据来源网址 PubMed ID
    支气管哮喘 2021 欧洲 34 551 291 408 442 https://www.ebi.ac.uk/gwas/downloads/summary-statistics 34103634
    腰椎骨密度 2015 混合 10 582 867 28 498 http://www.gefos.org/?q=content/data-release-2015 26367794
    股骨颈骨密度 2015 混合 10 586 900 32 735 http://www.gefos.org/?q=content/data-release-2015 26367794
    前臂骨密度 2015 混合 9 955 366 8 143 http://www.gefos.org/?q=content/data-release-2015 26367794
    跟骨骨密度 2018 欧洲 13 705 641 426 824 http://www.gefos.org/?q=content/data-release-2018 30598549
    下载: 导出CSV

    表  2   支气管哮喘与骨密度关系的孟德尔随机化分析结果

    暴露因素 结局 单核苷酸多态性数量/个 孟德尔随机化分析
    方法 OR 95%CI P
    支气管哮喘 腰椎骨密度 57 MR-Egger回归 1.127 1.004~1.264 0.047
    加权中位数法 1.023 0.957~1.093 0.491
    逆方差加权法 1.031 0.984~1.081 0.195
    简单模型 1.014 0.883~1.164 0.843
    加权模型 1.056 0.954~1.169 0.258
    支气管哮喘 股骨颈骨密度 57 MR-Egger回归 1.039 0.936~1.152 0.479
    加权中位数法 1.021 0.965~1.079 0.489
    逆方差加权法 1.014 0.973~1.057 0.505
    简单模型 0.989 0.886~1.104 0.850
    加权模型 1.029 0.957~1.106 0.449
    支气管哮喘 前臂骨密度 57 MR-Egger回归 1.027 0.843~1.252 0.792
    加权中位数法 1.066 0.960~1.183 0.252
    逆方差加权法 1.011 0.935~1.094 0.775
    简单模型 1.022 0.832~1.255 0.826
    加权模型 1.058 0.918~1.220 0.459
    支气管哮喘 跟骨骨密度 49 MR-Egger回归 0.982 0.952~1.012 0.237
    加权中位数法 0.985 0.970~1.001 0.071
    逆方差加权法 0.986 0.974~0.998 0.023
    简单模型 0.975 0.936~1.015 0.188
    加权模型 0.975 0.944~1.007 0.153
    下载: 导出CSV

    表  3   敏感性分析结果

    暴露因素 结局 异质性检验 水平多效性检验
    Q P 截距 P
    支气管哮喘 腰椎骨密度 73.709 0.056 -0.007 0.107
    股骨颈骨密度 76.945 0.033 -0.002 0.627
    前臂骨密度 64.274 0.209 -0.001 0.869
    跟骨骨密度 85.505 0.001 < 0.001 0.754
    下载: 导出CSV
  • [1] 刘愉勤, 刘英, 李兰, 等. 骨质疏松椎体骨折磁共振STIR信号改变与CT骨折线类型的关系[J]. 实用临床医药杂志, 2024, 28(5): 21-24. doi: 10.7619/jcmp.20233934
    [2]

    CHUNG W S, LIN C L, CHEN Y F, et al. Increased stroke risk among adult asthmatic patients[J]. Eur J Clin Invest, 2014, 44(11): 1025-1033. doi: 10.1111/eci.12336

    [3]

    GUH D P, ZHANG W, BANSBACK N, et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis[J]. BMC Public Health, 2009, 9: 88. doi: 10.1186/1471-2458-9-88

    [4]

    BUCKLEY L, HUMPHREY M B. Glucocorticoid-induced osteoporosis[J]. N Engl J Med, 2018, 379(26): 2547-2556. doi: 10.1056/NEJMcp1800214

    [5]

    JUNG J W, KANG H R, KIM J Y, et al. Are asthmatic patients prone to bone loss?[J]. Ann Allergy Asthma Immunol, 2014, 112(5): 426-431. doi: 10.1016/j.anai.2014.02.013

    [6]

    LAATIKAINEN A K, KRÖGER H P, TUKIAINEN H O, et al. Bone mineral density in perimenopausal women with asthma: a population-based cross-sectional study[J]. Am J Respir Crit Care Med, 1999, 159(4 Pt 1): 1179-1185.

    [7]

    HARITON E, LOCASCIO J J. Randomised controlled trials- the gold standard for effectiveness research: study design: randomised controlled trials[J]. BJOG, 2018, 125(13): 1716. doi: 10.1111/1471-0528.15199

    [8]

    BOWDEN J, HOLMES M V. Meta-analysis and Mendelian randomization: a review[J]. Res Synth Methods, 2019, 10(4): 486-496. doi: 10.1002/jrsm.1346

    [9] 刘波, 游俊杰, 郑思琳, 等. 基于孟德尔随机化分析胃食管反流病与慢性阻塞性肺疾病的因果关系研究[J]. 实用临床医药杂志, 2024, 28(1): 113-117. doi: 10.7619/jcmp.20232575
    [10]

    VALETTE K, LI Z L, BON-BARET V, et al. Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank[J]. Commun Biol, 2021, 4(1): 700. doi: 10.1038/s42003-021-02227-6

    [11]

    ZHENG H F, FORGETTA V, HSU Y H, et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture[J]. Nature, 2015, 526(7571): 112-117. doi: 10.1038/nature14878

    [12]

    DAVEY SMITH G, HEMANI G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies[J]. Hum Mol Genet, 2014, 23(R1): R89-R98. doi: 10.1093/hmg/ddu328

    [13]

    BOWDEN J, DAVEY SMITH G, BURGESS S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2): 512-525. doi: 10.1093/ije/dyv080

    [14]

    HEMANI G, ZHENG J, ELSWORTH B, et al. The MR-Base platform supports systematic causal inference across the human phenome[J]. eLife, 2018, 7: e34408. doi: 10.7554/eLife.34408

    [15]

    GENOMES PROJECT CONSORTIUM, AUTON A, BROOKS L D, et al. A global reference for human genetic variation[J]. Nature, 2015, 526(7571): 68-74. doi: 10.1038/nature15393

    [16]

    MENSAH-KANE J, SCHMIDT A F, HINGORANI A D, et al. No clinically relevant effect of heart rate increase and heart rate recovery during exercise on cardiovascular disease: a Mendelian randomization analysis[J]. Front Genet, 2021, 12: 569323. doi: 10.3389/fgene.2021.569323

    [17]

    BURGESS S, DUDBRIDGE F, THOMPSON S G. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods[J]. Stat Med, 2016, 35(11): 1880-1906. doi: 10.1002/sim.6835

    [18]

    BURGESS S, THOMPSON S G. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389. doi: 10.1007/s10654-017-0255-x

    [19]

    BOWDEN J, DEL GRECO M F, MINELLI C, et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization[J]. Stat Med, 2017, 36(11): 1783-1802. doi: 10.1002/sim.7221

    [20]

    IQBAL F, MICHAELSON J, THALER L, et al. Declining bone mass in men with chronic pulmonary disease: contribution of glucocorticoid treatment, body mass index, and gonadal function[J]. Chest, 1999, 116(6): 1616-1624. doi: 10.1378/chest.116.6.1616

    [21]

    VRIES F D, VAN STAA T P, BRACKE M S, et al. Severity of obstructive airway disease and risk of osteoporotic fracture[J]. Eur Respir J, 2005, 25(5): 879-884. doi: 10.1183/09031936.05.00058204

    [22]

    SIN D D, MAN J P, PAUL MAN S F. The risk of osteoporosis in Caucasian men and women with obstructive airways disease[J]. Am J Med, 2003, 114(1): 10-14. doi: 10.1016/S0002-9343(02)01297-4

    [23]

    LEKAMWASAM S, TRIVEDI D P, KHAW K T. An association between respiratory function and bone mineral density in women from the general community: a cross sectional study[J]. Osteoporos Int, 2002, 13(9): 710-715. doi: 10.1007/s001980200097

    [24]

    MOON R J, CITERONI N L, AIHIE R R, et al. Early life programming of skeletal health[J]. Curr Osteoporos Rep, 2023, 21(4): 433-446. doi: 10.1007/s11914-023-00800-y

    [25]

    WÖLFL C, ENGLERT S, MOGHADDAM A A, et al. Time course of 25(OH)D3 vitamin D3 as well as PTH (parathyroid hormone) during fracture healing of patients with normal and low bone mineral density (BMD)[J]. BMC Musculoskelet Disord, 2013, 14: 6. doi: 10.1186/1471-2474-14-6

    [26]

    FORD E S, HEATH G W, MANNINO D M, et al. Leisure-time physical activity patterns among US adults with asthma[J]. Chest, 2003, 124(2): 432-437. doi: 10.1378/chest.124.2.432

    [27]

    BISCHOFF-FERRARI H A, KIEL D P, DAWSON-HUGHES B, et al. Dietary calcium and serum 25-hydroxyvitamin D status in relation to BMD among U. S. adults[J]. J Bone Miner Res, 2009, 24(5): 935-942. doi: 10.1359/jbmr.081242

    [28]

    HOLICK M F. Vitamin D deficiency[J]. N Engl J Med, 2007, 357(3): 266-281. doi: 10.1056/NEJMra070553

    [29]

    BREHM J M, CELEDÓN J C, SOTO-QUIROS M E, et al. Serum vitamin D levels and markers of severity of childhood asthma in Costa Rica[J]. Am J Respir Crit Care Med, 2009, 179(9): 765-771. doi: 10.1164/rccm.200808-1361OC

    [30]

    ZENG X, LIU D L, ZHAO X M, et al. Association of bone mineral density with lung function in a Chinese general population: the Xinxiang rural cohort study[J]. BMC Pulm Med, 2019, 19(1): 239. doi: 10.1186/s12890-019-1008-2

    [31]

    BOYLE W J, SIMONET W S, LACEY D L. Osteoclast differentiation and activation[J]. Nature, 2003, 423(6937): 337-342. doi: 10.1038/nature01658

    [32]

    BENDRE M S, MONTAGUE D C, PEERY T, et al. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease[J]. Bone, 2003, 33(1): 28-37. doi: 10.1016/S8756-3282(03)00086-3

    [33]

    LIU M R, HUO Y T, CHENG Y X. Mechanistic regulation of Wnt pathway-related progression of chronic obstructive pulmonary disease airway lesions[J]. Int J Chron Obstruct Pulmon Dis, 2023, 18: 871-880. doi: 10.2147/COPD.S391487

    [34]

    DAI L Q, XU D, WAN C, et al. DKK1 positively correlates with lung function in COPD patients and reduces airway inflammation[J]. Int J Chron Obstruct Pulmon Dis, 2022, 17: 93-100. doi: 10.2147/COPD.S341249

  • 期刊类型引用(3)

    1. 田朝阳,孙鲁英,孔令新,魏赈权,张翠利. 血液透析患者冠状动脉搭桥术后并发谵妄的诊治策略. 国际移植与血液净化杂志. 2022(01): 35-37 . 百度学术
    2. 杨艳. 甲氧明预处理对全麻非停跳冠状动脉搭桥术中低血压的影响. 医药论坛杂志. 2020(05): 133-135 . 百度学术
    3. 纪国敏,王闰,宋晓红,姜艳. 复方麝香注射液联合依达拉奉对颅脑外伤患者凝血和神经功能的影响分析. 中医临床研究. 2019(29): 69-72 . 百度学术

    其他类型引用(0)

图(2)  /  表(3)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  37
  • PDF下载量:  19
  • 被引次数: 3
出版历程
  • 收稿日期:  2024-04-06
  • 修回日期:  2024-06-10
  • 网络出版日期:  2024-07-19
  • 刊出日期:  2024-07-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭