Citation: | YIN Huafang, SHA Sha, CAI Yiling, YU Bo, LIU Jia, HE Jia, SUN Lingdi, WANG Jian. Research progress in the molecular mechanisms and prevention strategies of ovarian injury related to cervical cancer radiotherapy[J]. Journal of Clinical Medicine in Practice, 2024, 28(10): 141-144. DOI: 10.7619/jcmp.20240044 |
Radiotherapy, as an important means of tumor treatment, plays a significant role in the treatment of cervical cancer. However, the ovaries are highly sensitive to radiation, which is prone to appear radiation-related injuries, leading to ovarian dysfunction and loss of fertility in young female patients, seriously affecting their physical and mental health. The degree of ovarian injury is influenced by various factors such as the dose, volume, and duration of radiation exposure to the ovaries, as well as the patient's age. Ovarian displacement and advancements in radiotherapy techniques can significantly relieve radiation-related ovarian injury. Currently, drug protection techniques are still immature, and new fertility preservation methods are receiving increasing attention but require further improvement. This article reviewed the research progress in the molecular mechanisms, prevention strategies, and new fertility preservation techniques for ovarian injury related to cervical cancer radiotherapy, aiming to provide a reference for ovarian function protection during radiotherapy for young cervical cancer patients.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
|
[2] |
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7-30. doi: 10.3322/caac.21332
|
[3] |
王洁, 严雪冰, 魏本飞. 术后放疗联合全身化疗治疗早期宫颈癌的疗效观察[J]. 实用临床医药杂志, 2023, 27(11): 11-16. doi: 10.7619/jcmp.20223685
|
[4] |
LAMBERTINI M, PECCATORI F A, DEMEESTERE I, et al. Fertility preservation and post-treatment pregnancies in post-pubertal cancer patients: ESMO Clinical Practice Guidelines[J]. Ann Oncol, 2020, 31(12): 1664-1678. doi: 10.1016/j.annonc.2020.09.006
|
[5] |
CAMPBELL S B, WOODARD T L. An update on fertility preservation strategies for women with cancer[J]. Gynecol Oncol, 2020, 156(1): 3-5. doi: 10.1016/j.ygyno.2019.11.001
|
[6] |
ZHANG G Y, FU C L, ZHANG Y Z, et al. Extended-field intensity-modulated radiotherapy and concurrent cisplatin-based chemotherapy for postoperative cervical cancer with common iliac or para-aortic lymph node metastases: a retrospective review in a single institution[J]. Int J Gynecol Cancer, 2012, 22(7): 1220-1225. doi: 10.1097/IGC.0b013e3182643b7c
|
[7] |
MAIER P, HARTMANN L, WENZ F, et al. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization[J]. Int J Mol Sci, 2016, 17(1): 102. doi: 10.3390/ijms17010102
|
[8] |
HATZI V I, LASKARATOU D A, MAVRAGANI I V, et al. Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology[J]. Cancer Lett, 2015, 356(1): 34-42. doi: 10.1016/j.canlet.2013.11.018
|
[9] |
MELIA E, PARSONS J L. DNA damage and repair dependencies of ionising radiation modalities[J]. Biosci Rep, 2023, 43(10): BSR20222586. doi: 10.1042/BSR20222586
|
[10] |
LIU T T, WANG H, SHEN H, et al. TLR4 agonist MPLA ameliorates heavy-ion radiation damage via regulating DNA damage repair and apoptosis[J]. Radiat Res, 2023, 200(2): 127-138.
|
[11] |
殷蔚伯. 肿瘤放射治疗学[M]. 4版. 北京: 中国协和医科大学出版社, 2008: 546-573.
|
[12] |
BURKE P J. Human oocyte radiosensitivity[J]. Radiol Technol, 2004, 75(6): 419-424.
|
[13] |
GAY C, RAPHAEL Y R, STEERS J, et al. Ovarian transposition before pelvic radiation therapy: spatial distribution and dose volume analysis[J]. Adv Radiat Oncol, 2022, 7(1): 100804. doi: 10.1016/j.adro.2021.100804
|
[14] |
VAN DORP W, MULDER R L, KREMER L C M, et al. Recommendations for premature ovarian insufficiency surveillance for female survivors of childhood, adolescent, and young adult cancer: a report from the international late effects of childhood cancer guideline harmonization group in collaboration with the PanCareSurFup consortium[J]. J Clin Oncol, 2016, 34(28): 3440-3450. doi: 10.1200/JCO.2015.64.3288
|
[15] |
REISER E, BAZZANO M V, SOLANO M E, et al. Unlaid eggs: ovarian damage after low-dose radiation[J]. Cells, 2022, 11(7): 1219. doi: 10.3390/cells11071219
|
[16] |
COSGROVE C M, SALANI R. Ovarian effects of radiation and cytotoxic chemotherapy damage[J]. Best Pract Res Clin Obstet Gynaecol, 2019, 55: 37-48. doi: 10.1016/j.bpobgyn.2018.07.008
|
[17] |
STROUD J S, MUTCH D, RADER J, et al. Effects of cancer treatment on ovarian function[J]. Fertil Steril, 2009, 92(2): 417-427. doi: 10.1016/j.fertnstert.2008.07.1714
|
[18] |
KELSEY T W, HUA C H, WYATT A, et al. A predictive model of the effect of therapeutic radiation on the human ovary[J]. PLoS One, 2022, 17(11): e0277052. doi: 10.1371/journal.pone.0277052
|
[19] |
WO J Y, VISWANATHAN A N. Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients[J]. Int J Radiat Oncol Biol Phys, 2009, 73(5): 1304-1312. doi: 10.1016/j.ijrobp.2008.12.016
|
[20] |
MCCLAM M, XIAO S. Preserving oocytes in oncofertility[J]. Biol Reprod, 2022, 106(2): 328-337. doi: 10.1093/biolre/ioac008
|
[21] |
李烨, 黄小莉, 孙蓬明. 医疗相关卵巢损伤的防治策略和方法[J]. 实用妇产科杂志, 2022, 38(2): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SFCZ202202006.htm
|
[22] |
LV X J, CHENG X L, TU Y Q, et al. Association between the location of transposed ovary and ovarian dose in patients with cervical cancer treated with postoperative pelvic radiotherapy[J]. Radiat Oncol, 2019, 14(1): 230. doi: 10.1186/s13014-019-1437-3
|
[23] |
SAMAILA M O, ADESIYUN A G, OLUWOLE O P. Metastatic ovarian squamous cell carcinoma[J]. Singapore Med J, 2008, 49(5): e139-e141.
|
[24] |
董胜楠, 黄洋洋, 杨军, 等. 非共面IMRT在宫颈癌放疗计划中保护卵巢的可行性探讨[J]. 现代肿瘤医学, 2023, 31(1): 140-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SXZL202301026.htm
|
[25] |
白乘源. 宫颈癌放疗中卵巢耐受剂量及不同放疗技术剂量学对比研究[D]. 衡阳: 南华大学, 2021.
|
[26] |
MISHRA K N, MOFTAH B A, ALSBEIH G A. Appraisal of mechanisms of radioprotection and therapeutic approaches of radiation countermeasures[J]. Biomed Pharmacother, 2018, 106: 610-617.
|
[27] |
张良, 范楷, 靖俊, 等. 褪黑素对放疗后大鼠卵巢功能保护作用的探讨[J]. 医学研究生学报, 2014, 27(6): 592-595. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYB201406009.htm
|
[28] |
ZELINSKI M B, MURPHY M K, LAWSON M S, et al. In vivo delivery of FTY720 prevents radiation-induced ovarian failure and infertility in adult female nonhuman Primates[J]. Fertil Steril, 2011, 95(4): 1440-1445, e1-7.
|
[29] |
KAYA, DESDICIOGLU R, SEZIK M, et al. Does sphingosine-1-phosphate have a protective effect on cyclophosphamide- and irradiation-induced ovarian damage in the rat model[J]. Fertil Steril, 2008, 89(3): 732-735.
|
[30] |
SAID R S, NADA A S, EL-DEMERDASH E. Sodium selenite improves folliculogenesis in radiation-induced ovarian failure: a mechanistic approach[J]. PLoS One, 2012, 7(12): e50928.
|
[31] |
ZHAO F Q, AN M X, DING X N, et al. Protection of Zuoguiwan against apoptosis of follicles in rats injured by 60Co γ-rays: Based on PI3K/Akt/mTOR signaling pathway[J]. Chin J Exp Tradit Med Formul, 2022, 28(18): 12-19.
|
[32] |
MANTAWY E M, SAID R S, ABDEL-AZIZ A K. Mechanistic approach of the inhibitory effect of chrysin on inflammatory and apoptotic events implicated in radiation-induced premature ovarian failure: emphasis on TGF-β/MAPKs signaling pathway[J]. Biomed Pharmacother, 2019, 109: 293-303.
|
[33] |
SAID R S, EL-DEMERDASH E, NADA A S, et al. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1)[J]. Biochem Pharmacol, 2016, 103: 140-150.
|
[34] |
YOUNG S R, CHANG Y E, YANG W V, et al. Maximize the safety and efficacy of fertility preservation by random start/dual ovarian stimulation for early breast cancer patients[J]. Taiwan J Obstet Gynecol, 2023, 62(2): 330-333.
|
[35] |
RIENZI L, GRACIA C, MAGGIULLI R, et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance[J]. Hum Reprod Update, 2017, 23(2): 139-155.
|
[36] |
LEE S, RYU K J, KIM B, et al. Comparison between slow freezing and vitrification for human ovarian tissue cryopreservation and xenotransplantation[J]. Int J Mol Sci, 2019, 20(13): 3346.
|
[37] |
CHENG H H, SHANG D T, ZHOU R J. Germline stem cells in human[J]. Signal Transduct Target Ther, 2022, 7(1): 345.
|
[38] |
BLÜMEL J E, MEZONES-HOLGUÍN E, CHEDRAUI P, et al. Is premature ovarian insufficiency associated with mortality A three-decade follow-up cohort[J]. Maturitas, 2022, 163: 82-87.
|