QIU Min, XU Shaohua, JIANG Hai, LONG Mingzhi. Changes of lipoprotein-associated phospholipase A2 and high sensitivity C reactive protein in patients with coronary slow flow[J]. Journal of Clinical Medicine in Practice, 2019, 23(10): 29-32. DOI: 10.7619/jcmp.201910009
Citation: QIU Min, XU Shaohua, JIANG Hai, LONG Mingzhi. Changes of lipoprotein-associated phospholipase A2 and high sensitivity C reactive protein in patients with coronary slow flow[J]. Journal of Clinical Medicine in Practice, 2019, 23(10): 29-32. DOI: 10.7619/jcmp.201910009

Changes of lipoprotein-associated phospholipase A2 and high sensitivity C reactive protein in patients with coronary slow flow

More Information
  • Received Date: March 09, 2019
  • Accepted Date: April 20, 2019
  • Available Online: February 22, 2021
  • Published Date: May 27, 2019
  •   Objective  To investigate the changes of plasma lipoprotein-associated phospholipase A2 (Lp-PLA2), high sensitivity C reactive protein (hs-CRP) and their relationships with coronary slow flow (CSF).
      Methods  A total of 65 CSF patients diagnosed with coronary angiography and 60 cases with normal coronary flow were selected as CSF group and control group. Coronary flow velocity was determined by the corrected blood flow framing method of thrombolytic therapy for myocardial infarction (TIMI). Plasma biochemical indexes, hs-CRP and Lp-PLA2 levels were detected in all patients.
      Results  There was no significant difference in clinical basic characteristics between two groups (P>0.05). Compared with the control group, the Lp-PLA2, hs-CRP and uric acid levels were significantly higher in CSF group (P < 0.05). The corrected TIMI frame count (TFC) for the left anterior descending artery, the left circumflex artery and the right coronary artery and the mean TFC were all significantly higher in CSF group than control group (P < 0.01). As the number of coronary arteries involved in CSF increased, the level of Lp-PLA2 gradually increased. Logistic regression analysis showed that Lp-PLA2 (OR=1.009, P=0.046) and hs-CRP (OR=1.071, P=0.048) were the independent predictors for CSF, and meanwhile, there was a significant positive correlation between Lp-PLA2 and hs-CRP (r=0.407, P < 0.001). Taking plasma Lp-PLA2 levels as the test variable, ROC curve analysis indicated that the area under the curve was 0.676 (P < 0.05).
      Conclusion  Plasma levels of Lp-PLA2 and hs-CRP are higher in patients with CSF when compared to patients with normal coronary anatomy, and Lp-PLA2 and hs-CRP are independent predictors for CSF. The higher Lp-PLA2 levels are correlated with the severity of CSF.
  • [1]
    Beltrame J F. Defining the coronary slow flow phenomenon[J]. Circ J, 2012, 76(4): 818-820. doi: 10.1253/circj.CJ-12-0205
    [2]
    Tambe A A, Demany M A, Zimmerman H A, et al. Angina pectoris and slow flow velocity of dye in coronary arteries-a new angiographic finding[J]. Am Heart J, 1972, 84(1): 66-71. doi: 10.1016/0002-8703(72)90307-9
    [3]
    王雷, 徐新生. 冠状动脉慢血流现象的研究进展[J]. 心肺血管病杂志, 2017, 36(9): 794-796. doi: 10.3969/j.issn.1007-5062.2017.09.021
    [4]
    Sen T. Coronary slow flow phenomenon leads to ST elevation myocardial infarction[J]. Korean Circ J, 2013, 43(3): 196-198. doi: 10.4070/kcj.2013.43.3.196
    [5]
    何永福, 孙林, 林志. 冠状动脉慢血流现象病理生理机制及治疗进展[J]. 心血管病学进展, 2018, 39(3): 448-552. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGB201803038.htm
    [6]
    Li J W, Wang H, Tian J P, et al. Change in lipoprotein-associated phospholipase A2 and its association with cardiovascular outcomes in patients with acute coronary syndrome[J]. Medicine (Baltimore), 2018, 97(28): e11517-11524. doi: 10.1097/MD.0000000000011517
    [7]
    黄立纲, 王春燕, 刘炼华, 等. 脂蛋白相关磷脂酶A2与冠心病严重程度的相关性研究[J]. 中华检验医学杂志, 2018, 41(6): 425-429. doi: 10.3760/cma.j.issn.1009-9158.2018.06.004
    [8]
    Millwood I Y, Bennett D A, Walters R G, et al. Lipoprotein-associated phospholipase A2 loss-of-function variant and risk of vascular diseases in 90, 000 Chinese adults[J]. JACC, 2016, 67(2): 230-231. doi: 10.1016/j.jacc.2015.10.056
    [9]
    Gibson C M, Cannon C P, Daley W L, et al. TIMI frame count: a quantitative method of assessing coronary artery flow[J]. Circulation, 1996, 93(5): 879-888. doi: 10.1161/01.CIR.93.5.879
    [10]
    Pekdemir H, Cin V G, Ciçek D, et al. Slow coronary flow may be a sign of diffuse atherosclerosis. contribution of FFR and IVUS[J]. Acta Cardiol, 2004, 59(2): 127-134. http://www.onacademic.com/detail/journal_1000040366718910_ed52.html
    [11]
    Şatiroĝlu Ö, Durakoĝlugil ME, Çetin M, et al. The role of urotensin Ⅱ and atherosclerotic risk factors in patients with slow coronary flow[J]. Interv Med Appl Sci, 2016, 8(4): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-QKYX201829009.htm
    [12]
    卢聪, 周敏, 赵宝龙, 等. 冠状动脉慢血流患者危险因素分析[J]. 微循环学杂志, 2018, 28(1): 28-32. doi: 10.3969/j.issn.1005-1740.2018.01.006
    [13]
    Rasmi Y, Bagheri M, Faramarz-Gaznagh S, et al. Transcriptional activity of tumor necrosis factor-alpha gene in peripheral blood mononuclear cells in patients with coronary slow flow[J]. ARYA Atheroscler, 2017, 13(4): 196-201. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677324/
    [14]
    梁海峰, 杨明, 刘瑜, 等. 同型半胱氨酸与冠状动脉慢血流的相关性[J]. 中国老年医学杂志, 2018, 38(13): 2112-2114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLXZ201813017.htm
    [15]
    于波心, 张亚杰, 王佳贺. 血浆脂蛋白相关磷脂酶A2的研究进展[J]. 实用医学杂志, 2018, 34(8): 1394-1397. doi: 10.3969/j.issn.1006-5725.2018.08.043
    [16]
    Li D, Zhao L, Yu J, et al. Lipoprotein-associated phospholipase A2 in coronary heart disease: Review and meta-analysis[J]. Clinica Chimica Acta, 2017, 465: 22-29. doi: 10.1016/j.cca.2016.12.006
    [17]
    Bonnefont-Rousselot D. Lp-PLA2, a biomarker of vascular inflammation and vulnerability of atherosclerosis plaques[J]. Ann Pharm Fr, 2016, 74(3): 190-197. doi: 10.1016/j.pharma.2015.09.002
    [18]
    Greenland P, Alpert J S, Beller G A, et al, American College of Cardiology Foundation; American Heart Association. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines[J]. J Am Coll Cardiol, 2010, 56(25): e50-103. doi: 10.1016/j.jacc.2010.09.001
    [19]
    Montalescot G, Sechtem U, Achenbach S, et al. 2013 ESC guidelines on the management of stable coronary artery disease: he Task Force on the management of stable coronary artery disease of the European Society of Cardiology[J]. Eur Heart J, 2013, 34(38): 2949-3003. doi: 10.1093/eurheartj/eht296
    [20]
    Maiolino G, Pedon L, Cesari M, et al. Lipoprotein-associated phospholipase A2 activity predicts cardiovascular events in high risk coronary artery disease patients[J]. PLoS One, 2012, 7(10): e48171-48181. doi: 10.1371/journal.pone.0048171
    [21]
    Yang L, Liu Y, Wang S, et al. Association between Lp-PLA2 and coronary heart disease in Chinese patients[J]. J Int Med Res, 2017, 45(1): 159-169. doi: 10.1177/0300060516678145
  • Cited by

    Periodical cited type(11)

    1. 刘亚男,房志琴,郭健宏,王亚玲. 冠状动脉慢血流患者血清Lp-PLA_2、NLR水平变化及临床意义. 广东医学. 2024(06): 717-722 .
    2. 朱雅男,张志强,徐继方,朱云霞,安梦秋. 冠状动脉慢血流的相关血清学分析. 心肺血管病杂志. 2023(01): 23-26 .
    3. 孙晓慧,贺静,王瑶,白蓉,薛晓珍,杨莉,乌宇亮. 血清脂蛋白相关磷脂酶A2水平与冠状动脉病变程度及慢血流的相关性分析. 临床医学研究与实践. 2023(26): 9-12 .
    4. 师志芳,贾营,张秀敬,谭化,王爱民,赵洁. 血清血小板活化因子和脂蛋白相关磷脂酶AA2对冠状动脉慢血流现象的预测价值分析. 中国心血管病研究. 2023(12): 1080-1085 .
    5. 梁万添,唐良秋,陈锦峰,庞军刚,周婉明,陈伟强,陈姣. 小檗碱对急性心肌梗死经皮冠状动脉介入术后冠状动脉不稳定斑块的治疗作用. 中国医药. 2021(01): 28-32 .
    6. 刘玲玲,韩磊. 冠状动脉慢血流与超敏CRP及左室舒张功能的相关性研究. 中国医药指南. 2021(22): 11-13 .
    7. 朱宝华,孙岩. 冠状动脉疾病差异基因富集和加权基因共表达网络分析. 实用临床医药杂志. 2021(17): 15-21 . 本站查看
    8. 陶金松,李健,徐霞,陆翊超,李伟章. 冠心病患者介入术中并发冠状动脉慢血流的影响因素. 现代医学与健康研究电子杂志. 2021(19): 93-95 .
    9. 陆爱民,童有福,赵艳. 利伐沙班对冠状动脉慢血流患者凝血功能及C反应蛋白的影响. 医学综述. 2021(21): 4354-4359 .
    10. 孙涛,张艳丽,侯梅凤,姚成俊,潘闽. 血清脂蛋白(a)[Lp(a)]、血清超敏C反应蛋白(hs-CRP)与冠状动脉慢血流之间的相关性. 系统医学. 2021(22): 32-36 .
    11. 陈艳俏,程伟,张成英,陈少军,马友合,孙久林. 保元汤合桂枝茯苓丸治疗冠状动脉慢血流临床观察. 中国中医药现代远程教育. 2020(19): 70-73 .

    Other cited types(0)

Catalog

    Article views (273) PDF downloads (5) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return