Citation: | QU Bo, LIU Danxia, ZHANG Wang, QIN Yu, HUANG Ting, LU Lu. Comparison of IOL master 700 and Lenstar for measurement of axial lengths[J]. Journal of Clinical Medicine in Practice, 2019, 23(12): 19-22. DOI: 10.7619/jcmp.201912006 |
[1] |
Foster P J, Buhrmann R, Quigley H A, et al. The definition and classification of glaucoma in prevalence surveys[J]. Br J Ophthalmol, 2002, 86(2): 238-242. doi: 10.1136/bjo.86.2.238
|
[2] |
Thomas R, George R, Parikh R, et al. Five year risk of progression of primary angle closure suspects to primary angle closure: a population based study[J]. Br J Ophthalmol, 2003, 87(4): 450-454. doi: 10.1136/bjo.87.4.450
|
[3] |
Thomas R, Parikh R, Muliyil J, et al. Five-year risk of progression of primary angle closure to primary angle closure glaucoma: a population-based study[J]. Acta Ophthalmol Scand, 2003, 81(5): 480-485. doi: 10.1034/j.1600-0420.2003.00135.x
|
[4] |
Wang L H, Huang W Y, Huang S S, et al. Ten-year incidence of primary angle closure in elderly Chinese: the Liwan Eye Study[J]. Br J Ophthalmol, 2019, 103(3): 355-360. doi: 10.1136/bjophthalmol-2017-311808
|
[5] |
严良, 李雯. 闭角型青光眼房角关闭机制研究现状[J]. 中国实用眼科杂志, 2013, 31(6): 653-656. doi: 10.3760/cma.j.issn.1006-4443.2013.06.001
|
[6] |
Lowe R F. Aetiology of the anatomical basis for primary angle-closure glaucoma. Biometrical comparisons between normal eyes and eyes with primary angle-closure glaucoma[J]. Br J Ophthalmol, 1970, 54(3): 161-169. doi: 10.1136/bjo.54.3.161
|
[7] |
Markowitz S N, Donald Morin J. The ratio of lens thickness to axial length for biometric standardization in angle-closure glaucoma[J]. American Journal of Ophthalmology, 1985, 99(4): 400-402. doi: 10.1016/0002-9394(85)90005-4
|
[8] |
Shammas H J, Hoffer K J. Repeatability and reproducibility of biometry and keratometry measurements using a noncontact optical low-coherence reflectometer and keratometer[J]. Am J Ophthalmol, 2012, 153(1): 55-61. doi: 10.1016/j.ajo.2011.06.012
|
[9] |
Koktekir B E, Gedik S, Bakbak B. Comparison of central corneal thickness measurements with optical low-coherence reflectometry and ultrasound pachymetry and reproducibility of both devices[J]. Cornea, 2012, 31(11): 1278-1281. doi: 10.1097/ICO.0b013e31823f7701
|
[10] |
Buckhurst J, Wolffsohn S, Shah S, et al. A new optical low coherence reflectometry device for ocular biometry in cataract patients[J]. British Journal of Ophthalmology, 2009, 93(7): 949-953. http://bjo.bmj.com/content/93/7/949.abstract
|
[11] |
Chen Y A, Hirnschall N, Findl O. Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer[J]. J Cataract Refract Surg, 2011, 37(3): 513-517. doi: 10.1016/j.jcrs.2010.10.041
|
[12] |
Akman A, Asena L, Güngör S G. Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500[J]. Br J Ophthalmol, 2016, 100(9): 1201-1205. doi: 10.1136/bjophthalmol-2015-307779
|
[13] |
Kurian M, Negalur N, Das S, et al. Biometry with a new swept-source optical coherence tomography biometer: Repeatability and agreement with an optical low-coherence reflectometry device[J]. J Cataract Refract Surg, 2016, 42(4): 577-581. doi: 10.1016/j.jcrs.2016.01.038
|
[14] |
Srivannaboon S, Chirapapaisan C, Chonpimai P, Loket S. Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer[J]. J Cataract Refract Surg, 2015, 41(10): 2224-2232. http://www.sciencedirect.com/science/article/pii/S0886335015011153
|
[15] |
Azuara-Blanco A, Burr J, Ramsay C, et al. Effectiveness of early lens extraction for the treatment of primary angle-closure glaucoma (EAGLE): a randomised controlled trial[J]. Lancet, 2016, 388(10052): 1389-1397.
|