Citation: | YAN Hai, FEI Yanmei. Value of allogeneic adipose stem cells combined with demineralized bone matrix in rabbit model of critical bone defect of radius[J]. Journal of Clinical Medicine in Practice, 2019, 23(19): 1-6. DOI: 10.7619/jcmp.201919001 |
[1] |
Inglis S, Schneider K H, Kanczler J M, et al. Harnessing human decellularized blood vessel matrices and cellular construct implants to promote bone healing in an ex vivo organotypic bone defect model[J]. Adv Healthc Mater, 2019, 8(9): e1800088. doi: 10.1002/adhm.201800088
|
[2] |
Janko M, Dietz K, Rachor J, et al. Improvement of bone healing by neutralization of microRNA-335-5p, but not by neutralization of microRNA-92A in bone marrow mononuclear cells transplanted into a large femur defect of the rat[J]. Tissue Eng Part A, 2019, 25(1/2): 55-68.
|
[3] |
Jeon Y S, Jeong H Y, Lee D K, et al. Borderline glenoid bone defect in anterior shoulder instability: latarjet procedure versus bankart repair[J]. Am J Sports Med, 2018, 46(9): 2170-2176. doi: 10.1177/0363546518776978
|
[4] |
Wen C J, Yan H, Fu S B, et al. Allogeneic adipose-derived stem cells regenerate bone in a critical-sized ulna segmental defect[J]. Exp Biol Med (Maywood), 2016, 241(13): 1401-1409. doi: 10.1177/1535370215576298
|
[5] |
Semyari H, Rajipour M, Sabetkish S, et al. Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: an animal study[J]. Cell Tissue Bank, 2016, 17(1): 69-83. doi: 10.1007/s10561-015-9518-5
|
[6] |
Yoon D, Kang B J, Kim Y, et al. Effect of serum-derived albumin scaffold and canine adipose tissue-derived mesenchymal stem cells on osteogenesis in canine segmental bone defect model[J]. J Vet Sci, 2015, 16(4): 397-404. doi: 10.4142/jvs.2015.16.4.397
|
[7] |
Dufrane D, Docquier P L, Delloye C, et al. Scaffold-free three-dimensional graft from autologous adipose-derived stem cells for large bone defect reconstruction: clinical proof of concept[J]. Medicine (Baltimore), 2015, 94(50): e2220. doi: 10.1097/MD.0000000000002220
|
[8] |
Szychlinska M A, Castrogiovanni P, Nsir H, et al. Engineered cartilage regeneration from adipose tissue derived-mesenchymal stem cells: A morphomolecular study on osteoblast, chondrocyte and apoptosis evaluation[J]. Exp Cell Res, 2017, 357(2): 222-235. doi: 10.1016/j.yexcr.2017.05.018
|
[9] |
Catalano M G, Marano F, Rinella L, et al. Extracorporeal shockwaves (ESWs) enhance the osteogenic medium-induced differentiation of adipose-derived stem cells into osteoblast-like cells[J]. J Tissue Eng Regen Med, 2017, 11(2): 390-399. doi: 10.1002/term.1922
|
[10] |
Wang QF, Huang Y, He GC, et al. Osteoblast differentiation of rabbit adipose-derived stem cells by polyethylenimine-mediated BMP-2 gene transfection in vitro[J]. Genet Mol Res, 2017, 16(1):1131-1139. http://www.ncbi.nlm.nih.gov/pubmed/28218774
|
[11] |
Ren Y, Han C, Wang J, et al. hBMP-7 induces the differentiation of adipose-derived mesenchymal stem cells into osteoblast-like cells[J]. Genet Mol Res, 2016, 15(3):1287-1295. http://www.ncbi.nlm.nih.gov/pubmed/27525862
|
[12] |
Ozeki N, Mogi M, Hase N, et al. Polyphosphate-induced matrix metalloproteinase-13 is required for osteoblast-like cell differentiation in human adipose tissue derived mesenchymal stem cells[J]. Biosci Trends, 2016, 10(5): 365-371. doi: 10.5582/bst.2016.01153
|
[13] |
Zhu Y M, Wu Y P, Cheng J, et al. Pharmacological activation of TAZ enhances osteogenic differentiation and bone formation of adipose-derived stem cells[J]. Stem Cell Res Ther, 2018, 9(1): 53-63. doi: 10.1186/s13287-018-0799-z
|
[14] |
Zhang Z L, Ma Y L, Guo S W, et al. Low-intensity pulsed ultrasound stimulation facilitates in vitro osteogenic differentiation of human adipose-derived stem cells via up-regulation of heat shock protein (HSP)70, HSP90, and bone morphogenetic protein (BMP) signaling pathway[J]. Biosci Rep, 2018, 38(3): BSR20180087. doi: 10.1042/BSR20180087
|
[15] |
Zhang X, Jiang W R, Liu Y S, et al. Human adipose-derived stem cells and simvastatin-functionalized biomimetic calcium phosphate to construct a novel tissue-engineered bone[J]. Biochem Biophys Res Commun, 2018, 495(1): 1264-1270. doi: 10.1016/j.bbrc.2017.11.150
|
[16] |
Zare H, Jamshidi S, Dehghan M M, et al. Bone marrow or adipose tissue mesenchymal stem cells: Comparison of the therapeutic potentials in mice model of acute liver failure[J]. J Cell Biochem, 2018, 119(7): 5834-5842. doi: 10.1002/jcb.26772
|
[17] |
Leslie S K, Cohen D J, Hyzy S L, et al. Microencapsulated rabbit adipose stem cells initiate tissue regeneration in a rabbit ear defect model[J]. J Tissue Eng Regen Med, 2018, 12(7): 1742-1753. doi: 10.1002/term.2702
|
[18] |
Zeng R X, He J Y, Zhang Y L, et al. Experimental study on repairing skin defect by tissue-engineered skin substitute compositely constructed by adipose-derived stem cells and fibrin gel[J]. Eur Rev Med Pharmacol Sci, 2017, 21(3 Suppl): 1-5. http://www.ncbi.nlm.nih.gov/pubmed/28745800
|
[19] |
Han D, Li J J. Repair of bone defect by using vascular bundle implantation combined with Runx Ⅱ gene-transfected adipose-derived stem cells and a biodegradable matrix[J]. Cell Tissue Res, 2013, 352(3): 561-571. doi: 10.1007/s00441-013-1595-9
|
[20] |
Brüning A, Mylonas I. Cbfa1/Runx2-transduced adult adipose stem cells on biodegradable scaffolds for segmental bone defect repair[J]. J Surg Res, 2013, 185(1): e67-e68. doi: 10.1016/j.jss.2012.06.055
|
[21] |
Carvalho P P, Leonor I B, Smith B J, et al. Undifferentiated human adipose-derived stromal/stem cells loaded onto wet-spun starch-polycaprolactone scaffolds enhance bone regeneration: nude mice calvarial defect in vivo study[J]. J Biomed Mater Res A, 2014, 102(9): 3102-3111. doi: 10.1002/jbm.a.34983
|
[22] |
Fan J B, Park H, Lee M K, et al. Adipose-derived stem cells and BMP-2 delivery in chitosan-based 3D constructs to enhance bone regeneration in a rat mandibular defect model[J]. Tissue Eng Part A, 2014, 20(15/16): 2169-2179. http://europepmc.org/abstract/med/24524819
|
[23] |
Xie H, Wang Z X, Zhang L M, et al. Extracellular vesicle-functionalized decalcified bone matrix scaffolds with enhanced pro-angiogenic and pro-bone regeneration activities[J]. Sci Rep, 2017, 7: 45622. doi: 10.1038/srep45622
|
[24] |
Dai L H, He Z M, Zhang X, et al. One-step repair for cartilage defects in a rabbit model: a technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture[J]. Am J Sports Med, 2014, 42(3): 583-591. doi: 10.1177/0363546513518415
|