Nueramina·TIELIWAERDI, LI Xin, HAN Limei, Nigela·YILIHAMU, Qimanguli·WUSHOUER. The mechanism of ghrelin in treating mice with bronchial asthma and its effect on pyroptosis[J]. Journal of Clinical Medicine in Practice, 2021, 25(10): 18-23. DOI: 10.7619/jcmp.20201564
Citation: Nueramina·TIELIWAERDI, LI Xin, HAN Limei, Nigela·YILIHAMU, Qimanguli·WUSHOUER. The mechanism of ghrelin in treating mice with bronchial asthma and its effect on pyroptosis[J]. Journal of Clinical Medicine in Practice, 2021, 25(10): 18-23. DOI: 10.7619/jcmp.20201564

The mechanism of ghrelin in treating mice with bronchial asthma and its effect on pyroptosis

More Information
  • Received Date: November 28, 2020
  • Available Online: June 01, 2021
  • Published Date: May 27, 2021
  •   Objective  To investigate the therapeutic effect of ghrelin in mice with bronchial asthma and its effect on pyroptosis.
      Methods  Thirty mice were randomly divided into control group, model group[ovalbumin (OVA) modeling] and treatment group (OVA combined with ghrelin), with 10 cases in each group. Mouse model of asthma was established, and airway injury was assessed by pathology and acetylcholine reactivity. The levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-5 (IL-5) and interleukin-13 (IL-13) in bronchoalveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry and pathology were used to evaluate the therapeutic effect of ghrelin on asthma in mice. The expression levels of pyroptosis related proteins in lung tissues were analyzed by Western blot.
      Results  Morphological results showed that the macrophage infiltration and inflammatory scores were significantly improved in the treatment group (P < 0.05). Masson staining and airway reactivity test showed that pulmonary fibrosis was significantly improved and respiratory resistance was significantly decreased in the treatment group (P < 0.05). Compared with model group, the total white blood cell count in treatment group was significantly decreased (P < 0.05). After treatment, the expression levels of TNF-α, IFN-γ, IL-5 and IL-13 in treatment group were significantly lower than those in model group (P < 0.05). NLRP3 expression in lung tissue was significantly decreased, and the expression levels of NLRP3, caspase-1 and interleukin-1B (IL-1B) were significantly decreased in the treatment group (P < 0.05).
      Conclusion  Ghrelin can treat asthma by reducing the degree of pyroptosis, which may provide a new idea for the treatment of asthma.
  • [1]
    INGRAM J L, KRAFT M. IL-13 in asthma and allergic disease: asthma phenotypes and targeted therapies[J]. J Allergy Clin Immunol, 2012, 130(4): 829-842. doi: 10.1016/j.jaci.2012.06.034
    [2]
    CARTER S A, MISTRY S, FITZPATRICK J, et al. Prediction of short-and long-term outcomes in childhood nephrotic syndrome[J]. Kidney Int Rep, 2020, 5(4): 426-434. doi: 10.1016/j.ekir.2019.12.015
    [3]
    HENDRY A, ÅHLÉN M, FERNANDES T, et al. Catalytic cracking of Etek lignin with zirconia supported metal-oxides for alkyl and alkoxy phenols recovery[J]. Bioresour Technol, 2020, 317: 124008. doi: 10.1016/j.biortech.2020.124008
    [4]
    MCDERMOTT J M, SYLVA S P, ONO S, et al. Abiotic redox reactions in hydrothermal mixing zones: Decreased energy availability for the subsurface biosphere[J]. PNAS, 2020, 117(34): 20453-20461. doi: 10.1073/pnas.2003108117
    [5]
    AUERBACH A, COHEN A, OFEK SHLOMAI N, et al. NKX2-2 mutation causes congenital diabetes and infantile obesity with paradoxical glucose-induced ghrelin secretion[J]. J Clin Endocrinol Metab, 2020, 105(11): 3486-3495. http://www.researchgate.net/publication/343778607_NKX2-2_Mutation_Causes_Congenital_Diabetes_and_Infantile_Obesity_With_Paradoxical_Glucose-Induced_Ghrelin_Secretion
    [6]
    FU T, WANG L, ZENG Q, et al. Ghrelin ameliorates asthma by inhibiting endoplasmic Reticulum stress[J]. Am J Med Sci, 2017, 354(6): 617-625. doi: 10.1016/j.amjms.2017.08.022
    [7]
    ZHANG F Y, XU F H, MI X, et al. Ghrelin/GHS-R1a signaling plays different roles in anxiety-related behaviors after acute and chronic caloric restriction[J]. Biochem Biophys Res Commun, 2020, 529(4): 1131-1136. doi: 10.1016/j.bbrc.2020.05.227
    [8]
    TYLER S R, BUNYAVANICH S. Leveraging-omics for asthma endotyping[J]. J Allergy Clin Immunol, 2019, 144(1): 13-23. doi: 10.1016/j.jaci.2019.05.015
    [9]
    ZHOU M, YANG W L, AZIZ M, et al. Therapeutic effect of human ghrelin and growth hormone: Attenuation of immunosuppression in septic aged rats[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(10 Pt B): 2584-2593. http://www.ncbi.nlm.nih.gov/pubmed/28115288
    [10]
    BOULET L P, O'BYRNE P M. Asthma and exercise-induced bronchoconstriction in Athletes[J]. N Engl J Med, 2015, 372(7): 641-648. doi: 10.1056/NEJMra1407552
    [11]
    STEVANOVIC D, STARCEVIC V, VILIMANOVICH U, et al. Immunomodulatory actions of central ghrelin in diet-induced energy imbalance[J]. Brain Behav Immun, 2012, 26(1): 150-158. doi: 10.1016/j.bbi.2011.08.009
    [12]
    KAUR R, CHUPP G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine[J]. J Allergy Clin Immunol, 2019, 144(1): 1-12. doi: 10.1016/j.jaci.2019.05.031
    [13]
    ABEGG S, KLEIN CERREJON D, GÜNTNER A T, et al. Thickness optimization of highly porous flame-aerosol deposited WO3 films for NO2 sensing at ppb[J]. Nanomaterials, 2020, 10(6): 1170. doi: 10.3390/nano10061170
    [14]
    BENGTSTRÖM L, SALDEN M, STEC A A. Stability of isocyanates sampled in fire smokes[J]. Ann Work Expo Health, 2018, 62(9): 1171-1175. doi: 10.1093/annweh/wxy072
    [15]
    MAGEE J T, PHILPOT C, YANG J, et al. Pyrolysis typing of isolates from a recurrence of systemic cryptococcosis[J]. J Med Microbiol, 1994, 40(3): 165-169. doi: 10.1099/00222615-40-3-165
  • Cited by

    Periodical cited type(17)

    1. 齐晏. 定向软通道治疗基底节区高血压脑出血的术后康复护理体会. 中国社区医师. 2021(33): 152-153 .
    2. 余娇,朱雪平. 脑电治疗仪联合康复护理在高血压性脑出血术后脑功能障碍患者中的应用. 医疗装备. 2020(03): 151-152 .
    3. 胡钜强,吴以艺,林球润. 基底节区脑出血软通道引流术的应用效果评价. 黑龙江医药. 2020(02): 385-387 .
    4. 陈旭文. 高血压脑出血术后瘫痪患者中运用早期康复护理的效果分析. 临床医药文献电子杂志. 2020(25): 62-63 .
    5. 陈小风. 早期康复护理对高血压脑出血颅内血肿清除术患者的并发症及生活能力的影响分析. 心血管病防治知识. 2020(25): 56-58 .
    6. 胡婷. 针对性护理干预在基底节区高血压脑出血患者围手术期中的应用. 黑龙江医药科学. 2019(02): 237-238 .
    7. 阮奶玲,游妹妹. 高血压护理教学实践中循证护理的运用效果观察. 心血管病防治知识(学术版). 2019(16): 68-69 .
    8. 段春芝,柯慧. 早期介入针刺结合现代康复护理用于脑出血术后临床疗效观察. 辽宁中医药大学学报. 2019(10): 204-207 .
    9. 顾华丽,赵艳君. 护患平行沟通法在基底节区高血压脑出血患者术后的应用价值. 河南医学研究. 2019(21): 3993-3995 .
    10. 赵月. 早期康复护理对高血压脑出血后遗症患者独立生活能力和负性情绪的作用分析. 世界最新医学信息文摘. 2019(85): 10-11 .
    11. 罗燕. 康复护理对高血压患者血压控制的影响. 现代诊断与治疗. 2019(19): 3475-3476 .
    12. 张珍珠,周巧玲. 小儿先天性心脏病实施以家庭为中心的术后康复护理效果观察. 心血管病防治知识(学术版). 2019(24): 74-76 .
    13. 吕雅飞,王燕锋,陈君霞,刘进. 早期康复护理对高血压脑出血后遗症患者独立生活能力和负性情绪的作用. 中国现代医生. 2019(35): 132-134+139 .
    14. 刘爱举. 不同康复介入时间对脑出血神经功能、日常生活能力的影响. 中国继续医学教育. 2018(17): 148-150 .
    15. 梁其志,伍益,昌大平. 定向软通道置软管血肿吸引术治疗高血压脑出血的疗效分析. 现代医院. 2018(01): 96-97+101 .
    16. 肖颖. 基底节区脑出血患者的围手术期护理. 中国现代药物应用. 2018(03): 137-138 .
    17. 霍峻峰,陈小兵. 软通道血肿抽吸术联合中药分期治疗高血压脑出血的效果. 深圳中西医结合杂志. 2018(19): 8-9 .

    Other cited types(1)

Catalog

    Article views (550) PDF downloads (11) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return