YANG Junhong, LIANG Lanyu, SHAN Qing. Progress of chronic obstructive pulmonary disease complicated with sarcopenia[J]. Journal of Clinical Medicine in Practice, 2021, 25(3): 120-124. DOI: 10.7619/jcmp.20201598
Citation: YANG Junhong, LIANG Lanyu, SHAN Qing. Progress of chronic obstructive pulmonary disease complicated with sarcopenia[J]. Journal of Clinical Medicine in Practice, 2021, 25(3): 120-124. DOI: 10.7619/jcmp.20201598

Progress of chronic obstructive pulmonary disease complicated with sarcopenia

More Information
  • Received Date: December 17, 2020
  • Available Online: March 03, 2021
  • Published Date: March 03, 2021
  • Chronic obstructive pulmonary disease (COPD) is a complex and highly heterogeneous systemic disease. As one of the multiple complications of COPD, sarcopenia can accelerate the disease process, increase the disability rate and all-cause mortality. In recent years, studies have founded that the risk factors of COPD with sarcopenia were limited activity, malnutrition, fat deposition and so on. Combined with pulmonary function related indicators and muscle measurement techniques, the survival and mortality rates of hospitalized patients can be predicted more accurately. On this basis, individualized intervention is of great clinical significance to improve the outcome and prognosis of the disease. This article reviewed the risk factors, diagnosis, intervention and treatment of COPD and sarcopenia.
  • [1]
    JAITOVICH A, BARREIRO E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. what we know and can do for our patients[J]. Am J Respir Crit Care Med, 2018, 198(2): 175-186. doi: 10.1164/rccm.201710-2140CI
    [2]
    VANFLETEREN L E G W, SPRUIT M A, WOUTERS E F M, et al. Management of chronic obstructive pulmonary disease beyond the lungs[J]. Lancet Respiratory Medicine, 2016, 4(11): 911-924. doi: 10.1016/S2213-2600(16)00097-7
    [3]
    KALYANI R R, CORRIERE M, FERRUCCI L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases[J]. Lancet Diabetes Endocrinol, 2014, 2(10): 819-829. doi: 10.1016/S2213-8587(14)70034-8
    [4]
    CRUZ-JENTOFT A J, BAHAT G, BAUER J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(1): 16-31. doi: 10.1093/ageing/afy169
    [5]
    CRUZ-JENTOFT A J, LANDI F, SCHNEIDER S M, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS)[J]. Age Ageing, 2014, 43(6): 748-759. doi: 10.1093/ageing/afu115
    [6]
    HAEHLING S, MORLEY J E, ANKER S D. An overview of sarcopenia: facts and numbers on prevalence and clinical impact[J]. J Cachexia Sarcopenia Muscle, 2010, 1(2): 129-133. doi: 10.1007/s13539-010-0014-2
    [7]
    JONES S E, MADDOCKS M, KON S S, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation[J]. Thorax, 2015, 70(3): 213-218. doi: 10.1136/thoraxjnl-2014-206440
    [8]
    YE X, WANG M J, XIAO H. Echo intensity of the rectus femoris in stable COPD patients[J]. Int J Chron Obstruct Pulmon Dis, 2017, 12: 3007-3015. doi: 10.2147/COPD.S143645
    [9]
    MALTAIS F, DECRAMER M, CASABURI R, et al. An official American thoracic society/European respiratory society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2014, 189(9): e15-e62. doi: 10.1164/rccm.201402-0373ST
    [10]
    CELLI B R, COTE C G, MARIN J M, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease[J]. N Engl J Med, 2004, 350(10): 1005-1012. doi: 10.1056/NEJMoa021322
    [11]
    MARQUIS K, DEBIGARÉR, LACASSE Y, et al. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2002, 166(6): 809-813. doi: 10.1164/rccm.2107031
    [12]
    TRAJANOSKA K, SCHOUFOUR J D, DARWEESH S K, et al. Sarcopenia and its clinical correlates in the general population: the Rotterdam study[J]. J Bone Miner Res, 2018, 33(7): 1209-1218. doi: 10.1002/jbmr.3416
    [13]
    SCHOLS A M, SLANGEN J, VOLOVICS L, et al. Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 1998, 157(6 Pt 1): 1791-1797.
    [14]
    NGUYEN L T, BEDU M, CAILLAUD D, et al. Increased resting energy expenditure is related to plasma TNF-alpha concentration in stable COPD patients[J]. Clin Nutr, 1999, 18(5): 269-274. doi: 10.1016/S0261-5614(98)80023-X
    [15]
    PERROT L, GREIL A, BOIRIE Y, et al. Prevalence of sarcopenia and malnutrition during acute exacerbation of COPD and after 6 months recovery[J]. Eur J Clin Nutr, 2020, 74(11): 1556-1564. doi: 10.1038/s41430-020-0623-6
    [16]
    KOO H K, PARK J H, PARK H K, et al. Conflicting role of sarcopenia and obesity in male patients with chronic obstructive pulmonary disease: Korean National Health and Nutrition Examination Survey[J]. PLoS One, 2014, 9(10): e110448. doi: 10.1371/journal.pone.0110448
    [17]
    LIMPAWATTANA P, INTHASUWAN P, PUTRAVEEPHONG S, et al. Sarcopenia in chronic obstructive pulmonary disease: a study of prevalence and associated factors in the Southeast Asian population[J]. Chron Respir Dis, 2018, 15(3): 250-257. doi: 10.1177/1479972317743759
    [18]
    GARDINI GARDENGHI G, BONI E, TODISCO P, et al. Respiratory function in patients with stable anorexia nervosa[J]. Chest, 2009, 136(5): 1356-1363. doi: 10.1378/chest.08-3020
    [19]
    KWAN H Y, MADDOCKS M, NOLAN C M, et al. The prognostic significance of weight loss in chronic obstructive pulmonary disease-related cachexia: a prospective cohort study[J]. J Cachexia Sarcopenia Muscle, 2019, 10(6): 1330-1338. doi: 10.1002/jcsm.12463
    [20]
    ROLLAND Y, LAUWERS-CANCES V, CRISTINI C, et al. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l'OSteoporose) Study[J]. Am J Clin Nutr, 2009, 89(6): 1895-1900. doi: 10.3945/ajcn.2008.26950
    [21]
    BOUCHARD D R, DIONNE I J, BROCHU M. Sarcopenic/obesity and physical capacity in older men and women: data from the nutrition as a determinant of successful aging (NuAge)—the Quebec longitudinal study[J]. Obesity, 2009, 17(11): 2082-2088. doi: 10.1038/oby.2009.109
    [22]
    AUYEUNG T W, LEE J S, LEUNG J, et al. Adiposity to muscle ratio predicts incident physical limitation in a cohort of 3, 153 older adults: an alternative measurement of sarcopenia and sarcopenic obesity[J]. Age: Dordr, 2013, 35(4): 1377-1385. doi: 10.1007/s11357-012-9423-9
    [23]
    RUTTEN E P, BREYER M K, SPRUIT M A, et al. Abdominal fat mass contributes to the systemic inflammation in chronic obstructive pulmonary disease[J]. Clin Nutr, 2010, 29(6): 756-760. doi: 10.1016/j.clnu.2010.04.007
    [24]
    VAN DE BOOL C, RUTTEN E P, FRANSSEN F M, et al. Antagonistic implications of sarcopenia and abdominal obesity on physical performance in COPD[J]. Eur Respir J, 2015, 46(2): 336-345. doi: 10.1183/09031936.00197314
    [25]
    SERGI G, COIN A, MARIN S, et al. Body composition and resting energy expenditure in elderly male patients with chronic obstructive pulmonary disease[J]. Respir Med, 2006, 100(11): 1918-1924. doi: 10.1016/j.rmed.2006.03.008
    [26]
    BURDET L, DE MURALT B, SCHUTZ Y, et al. Thermogenic effect of bronchodilators in patients with chronic obstructive pulmonary disease[J]. Thorax, 1997, 52(2): 130-135. doi: 10.1136/thx.52.2.130
    [27]
    KOECHLIN C, COUILLARD A, SIMAR D, et al. Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2004, 169(9): 1022-1027. doi: 10.1164/rccm.200310-1465OC
    [28]
    KOECHLIN C, MALTAIS F, SAEY D, et al. Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease[J]. Thorax, 2005, 60(10): 834-841. doi: 10.1136/thx.2004.037531
    [29]
    BUDDEN K F, GELLATLY S L, WOOD D L, et al. Emerging pathogenic links between microbiota and the gut-lung axis[J]. Nat Rev Microbiol, 2017, 15(1): 55-63. doi: 10.1038/nrmicro.2016.142
    [30]
    MORTAZ E, ADCOCK I M, RICCIARDOLO F L, et al. Anti-inflammatory effects of Lactobacillus rahmnosus and Bifidobacterium breve on cigarette smoke activated human macrophages[J]. PLoS One, 2015, 10(8): e0136455. doi: 10.1371/journal.pone.0136455
    [31]
    SZE M A, DIMITRIU P A, HAYASHI S, et al. The lung tissue microbiome in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2012, 185(10): 1073-1080. doi: 10.1164/rccm.201111-2075OC
    [32]
    CANFORA E E, JOCKEN J W, BLAAK E E. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nat Rev Endocrinol, 2015, 11(10): 577-591. doi: 10.1038/nrendo.2015.128
    [33]
    POLKEY M I, SPRUIT M A, EDWARDS L D, et al. Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization[J]. Am J Respir Crit Care Med, 2013, 187(4): 382-386. doi: 10.1164/rccm.201209-1596OC
    [34]
    HERNANDES N A, WOUTERS E F M, MEIJER K, et al. Reproducibility of 6-minute walking test in patients with COPD[J]. Eur Respir J, 2011, 38(2): 261-267. doi: 10.1183/09031936.00142010
    [35]
    LUO Y W, ZHOU L Q, LI Y, et al. Fat-free mass index for evaluating the nutritional status and disease severity in COPD[J]. Respir Care, 2016, 61(5): 680-688. doi: 10.4187/respcare.04358
    [36]
    VESTBO J, PRESCOTT E, ALMDAL T, et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study[J]. Am J Respir Crit Care Med, 2006, 173(1): 79-83. http://thorax.bmj.com/external-ref?access_num=10.1164/rccm.200506-969OC&link_type=DOI
    [37]
    SHEEAN P M, PETERSON S J, GOMEZ PEREZ S, et al. The prevalence of sarcopenia in patients with respiratory failure classified as normally nourished using computed tomography and subjective global assessment[J]. JPEN J Parenter Enteral Nutr, 2014, 38(7): 873-879. doi: 10.1177/0148607113500308
    [38]
    ZHI J H, SHAN Q, LIANG L Y, et al. Low skeletal muscle area as a prognostic marker for chronic obstructive pulmonary disease in elderly patients admitted to ICU[J]. Sci Rep, 2019, 9(1): 19117. doi: 10.1038/s41598-019-55737-z
    [39]
    HOSTRUP M, REITELSEDER S, JESSEN S, et al. Beta2 -adrenoceptor agonist salbutamol increases protein turnover rates and alters signalling in skeletal muscle after resistance exercise in young men[J]. J Physiol, 2018, 596(17): 4121-4139. doi: 10.1113/JP275560
    [40]
    LEE P, BIRZNIECE V, UMPLEBY A M, et al. Formoterol, a highly β2-selective agonist, induces gender-dimorphic whole body leucine metabolism in humans[J]. Metabolism, 2015, 64(4): 506-512. doi: 10.1016/j.metabol.2014.12.005
    [41]
    TOLEDO M, PENNA F, OLIVA F, et al. A multifactorial anti-cachectic approach for cancer Cachexia in a rat model undergoing chemotherapy[J]. J Cachexia Sarcopenia Muscle, 2016, 7(1): 48-59. doi: 10.1002/jcsm.12035
    [42]
    ABRIGO J, MAR? N T, AGUIRRE F, et al. N-acetyl cysteine attenuates the sarcopenia and muscle apoptosis induced by chronic liver disease[J]. Curr Mol Med, 2019, 20(1): 60-71. doi: 10.2174/1566524019666190917124636
    [43]
    SAKUMA K, YAMAGUCHI A. Recent advances in pharmacological, hormonal, and nutritional intervention for sarcopenia[J]. Pflugers Arch, 2018, 470(3): 449-460. doi: 10.1007/s00424-017-2077-9
    [44]
    ROCHESTER C L, VOGIATZIS I, HOLLAND A E, et al. An official American thoracic society/European respiratory society policy statement: enhancing implementation, use, and delivery of pulmonary rehabilitation[J]. Am J Respir Crit Care Med, 2015, 192(11): 1373-1386. doi: 10.1164/rccm.201510-1966ST
    [45]
    MADDOCKS M, KON S S, CANAVAN J L, et al. Physical frailty and pulmonary rehabilitation in COPD: a prospective cohort study[J]. Thorax, 2016, 71(11): 988-995. doi: 10.1136/thoraxjnl-2016-208460
    [46]
    VAN WETERING C R, HOOGENDOORN M, BROEKHUIZEN R, et al. Efficacy and costs of nutritional rehabilitation in muscle-wasted patients with chronic obstructive pulmonary disease in a community-based setting: a prespecified subgroup analysis of the INTERCOM trial[J]. J Am Med Dir Assoc, 2010, 11(3): 179-187. doi: 10.1016/j.jamda.2009.12.083
    [47]
    GURGUN A, DENIZ S, ARGIN M, et al. Effects of nutritional supplementation combined with conventional pulmonary rehabilitation in muscle-wasted chronic obstructive pulmonary disease: a prospective, randomized and controlled study[J]. Respirology, 2013, 18(3): 495-500. doi: 10.1111/resp.12019
    [48]
    TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031. doi: 10.1038/nature05414
    [49]
    LOPEZ-SILES M, DUNCAN S H, GARCIA-GIL L J, et al. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics[J]. Isme J, 2017, 11(4): 841-852. doi: 10.1038/ismej.2016.176
    [50]
    BINDELS L B, BECK R, SCHAKMAN O, et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model[J]. PLoS One, 2012, 7(6): e37971. doi: 10.1371/journal.pone.0037971
    [51]
    BUIGUES C, FERN? NDEZ-GARRIDO J, PRUIMBOOM L, et al. Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial[J]. Int J Mol Sci, 2016, 17(6): 932-935. doi: 10.3390/ijms17060932
    [52]
    TOOLE P W, MARCHESI J R, HILL C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics[J]. Nat Microbiol, 2017, 2: 17057. doi: 10.1038/nmicrobiol.2017.57

Catalog

    Article views (453) PDF downloads (31) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return