Citation: | YANG Junhong, LIANG Lanyu, SHAN Qing. Progress of chronic obstructive pulmonary disease complicated with sarcopenia[J]. Journal of Clinical Medicine in Practice, 2021, 25(3): 120-124. DOI: 10.7619/jcmp.20201598 |
[1] |
JAITOVICH A, BARREIRO E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. what we know and can do for our patients[J]. Am J Respir Crit Care Med, 2018, 198(2): 175-186. doi: 10.1164/rccm.201710-2140CI
|
[2] |
VANFLETEREN L E G W, SPRUIT M A, WOUTERS E F M, et al. Management of chronic obstructive pulmonary disease beyond the lungs[J]. Lancet Respiratory Medicine, 2016, 4(11): 911-924. doi: 10.1016/S2213-2600(16)00097-7
|
[3] |
KALYANI R R, CORRIERE M, FERRUCCI L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases[J]. Lancet Diabetes Endocrinol, 2014, 2(10): 819-829. doi: 10.1016/S2213-8587(14)70034-8
|
[4] |
CRUZ-JENTOFT A J, BAHAT G, BAUER J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(1): 16-31. doi: 10.1093/ageing/afy169
|
[5] |
CRUZ-JENTOFT A J, LANDI F, SCHNEIDER S M, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS)[J]. Age Ageing, 2014, 43(6): 748-759. doi: 10.1093/ageing/afu115
|
[6] |
HAEHLING S, MORLEY J E, ANKER S D. An overview of sarcopenia: facts and numbers on prevalence and clinical impact[J]. J Cachexia Sarcopenia Muscle, 2010, 1(2): 129-133. doi: 10.1007/s13539-010-0014-2
|
[7] |
JONES S E, MADDOCKS M, KON S S, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation[J]. Thorax, 2015, 70(3): 213-218. doi: 10.1136/thoraxjnl-2014-206440
|
[8] |
YE X, WANG M J, XIAO H. Echo intensity of the rectus femoris in stable COPD patients[J]. Int J Chron Obstruct Pulmon Dis, 2017, 12: 3007-3015. doi: 10.2147/COPD.S143645
|
[9] |
MALTAIS F, DECRAMER M, CASABURI R, et al. An official American thoracic society/European respiratory society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2014, 189(9): e15-e62. doi: 10.1164/rccm.201402-0373ST
|
[10] |
CELLI B R, COTE C G, MARIN J M, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease[J]. N Engl J Med, 2004, 350(10): 1005-1012. doi: 10.1056/NEJMoa021322
|
[11] |
MARQUIS K, DEBIGARÉR, LACASSE Y, et al. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2002, 166(6): 809-813. doi: 10.1164/rccm.2107031
|
[12] |
TRAJANOSKA K, SCHOUFOUR J D, DARWEESH S K, et al. Sarcopenia and its clinical correlates in the general population: the Rotterdam study[J]. J Bone Miner Res, 2018, 33(7): 1209-1218. doi: 10.1002/jbmr.3416
|
[13] |
SCHOLS A M, SLANGEN J, VOLOVICS L, et al. Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 1998, 157(6 Pt 1): 1791-1797.
|
[14] |
NGUYEN L T, BEDU M, CAILLAUD D, et al. Increased resting energy expenditure is related to plasma TNF-alpha concentration in stable COPD patients[J]. Clin Nutr, 1999, 18(5): 269-274. doi: 10.1016/S0261-5614(98)80023-X
|
[15] |
PERROT L, GREIL A, BOIRIE Y, et al. Prevalence of sarcopenia and malnutrition during acute exacerbation of COPD and after 6 months recovery[J]. Eur J Clin Nutr, 2020, 74(11): 1556-1564. doi: 10.1038/s41430-020-0623-6
|
[16] |
KOO H K, PARK J H, PARK H K, et al. Conflicting role of sarcopenia and obesity in male patients with chronic obstructive pulmonary disease: Korean National Health and Nutrition Examination Survey[J]. PLoS One, 2014, 9(10): e110448. doi: 10.1371/journal.pone.0110448
|
[17] |
LIMPAWATTANA P, INTHASUWAN P, PUTRAVEEPHONG S, et al. Sarcopenia in chronic obstructive pulmonary disease: a study of prevalence and associated factors in the Southeast Asian population[J]. Chron Respir Dis, 2018, 15(3): 250-257. doi: 10.1177/1479972317743759
|
[18] |
GARDINI GARDENGHI G, BONI E, TODISCO P, et al. Respiratory function in patients with stable anorexia nervosa[J]. Chest, 2009, 136(5): 1356-1363. doi: 10.1378/chest.08-3020
|
[19] |
KWAN H Y, MADDOCKS M, NOLAN C M, et al. The prognostic significance of weight loss in chronic obstructive pulmonary disease-related cachexia: a prospective cohort study[J]. J Cachexia Sarcopenia Muscle, 2019, 10(6): 1330-1338. doi: 10.1002/jcsm.12463
|
[20] |
ROLLAND Y, LAUWERS-CANCES V, CRISTINI C, et al. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l'OSteoporose) Study[J]. Am J Clin Nutr, 2009, 89(6): 1895-1900. doi: 10.3945/ajcn.2008.26950
|
[21] |
BOUCHARD D R, DIONNE I J, BROCHU M. Sarcopenic/obesity and physical capacity in older men and women: data from the nutrition as a determinant of successful aging (NuAge)—the Quebec longitudinal study[J]. Obesity, 2009, 17(11): 2082-2088. doi: 10.1038/oby.2009.109
|
[22] |
AUYEUNG T W, LEE J S, LEUNG J, et al. Adiposity to muscle ratio predicts incident physical limitation in a cohort of 3, 153 older adults: an alternative measurement of sarcopenia and sarcopenic obesity[J]. Age: Dordr, 2013, 35(4): 1377-1385. doi: 10.1007/s11357-012-9423-9
|
[23] |
RUTTEN E P, BREYER M K, SPRUIT M A, et al. Abdominal fat mass contributes to the systemic inflammation in chronic obstructive pulmonary disease[J]. Clin Nutr, 2010, 29(6): 756-760. doi: 10.1016/j.clnu.2010.04.007
|
[24] |
VAN DE BOOL C, RUTTEN E P, FRANSSEN F M, et al. Antagonistic implications of sarcopenia and abdominal obesity on physical performance in COPD[J]. Eur Respir J, 2015, 46(2): 336-345. doi: 10.1183/09031936.00197314
|
[25] |
SERGI G, COIN A, MARIN S, et al. Body composition and resting energy expenditure in elderly male patients with chronic obstructive pulmonary disease[J]. Respir Med, 2006, 100(11): 1918-1924. doi: 10.1016/j.rmed.2006.03.008
|
[26] |
BURDET L, DE MURALT B, SCHUTZ Y, et al. Thermogenic effect of bronchodilators in patients with chronic obstructive pulmonary disease[J]. Thorax, 1997, 52(2): 130-135. doi: 10.1136/thx.52.2.130
|
[27] |
KOECHLIN C, COUILLARD A, SIMAR D, et al. Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2004, 169(9): 1022-1027. doi: 10.1164/rccm.200310-1465OC
|
[28] |
KOECHLIN C, MALTAIS F, SAEY D, et al. Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease[J]. Thorax, 2005, 60(10): 834-841. doi: 10.1136/thx.2004.037531
|
[29] |
BUDDEN K F, GELLATLY S L, WOOD D L, et al. Emerging pathogenic links between microbiota and the gut-lung axis[J]. Nat Rev Microbiol, 2017, 15(1): 55-63. doi: 10.1038/nrmicro.2016.142
|
[30] |
MORTAZ E, ADCOCK I M, RICCIARDOLO F L, et al. Anti-inflammatory effects of Lactobacillus rahmnosus and Bifidobacterium breve on cigarette smoke activated human macrophages[J]. PLoS One, 2015, 10(8): e0136455. doi: 10.1371/journal.pone.0136455
|
[31] |
SZE M A, DIMITRIU P A, HAYASHI S, et al. The lung tissue microbiome in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2012, 185(10): 1073-1080. doi: 10.1164/rccm.201111-2075OC
|
[32] |
CANFORA E E, JOCKEN J W, BLAAK E E. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nat Rev Endocrinol, 2015, 11(10): 577-591. doi: 10.1038/nrendo.2015.128
|
[33] |
POLKEY M I, SPRUIT M A, EDWARDS L D, et al. Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization[J]. Am J Respir Crit Care Med, 2013, 187(4): 382-386. doi: 10.1164/rccm.201209-1596OC
|
[34] |
HERNANDES N A, WOUTERS E F M, MEIJER K, et al. Reproducibility of 6-minute walking test in patients with COPD[J]. Eur Respir J, 2011, 38(2): 261-267. doi: 10.1183/09031936.00142010
|
[35] |
LUO Y W, ZHOU L Q, LI Y, et al. Fat-free mass index for evaluating the nutritional status and disease severity in COPD[J]. Respir Care, 2016, 61(5): 680-688. doi: 10.4187/respcare.04358
|
[36] |
VESTBO J, PRESCOTT E, ALMDAL T, et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study[J]. Am J Respir Crit Care Med, 2006, 173(1): 79-83. http://thorax.bmj.com/external-ref?access_num=10.1164/rccm.200506-969OC&link_type=DOI
|
[37] |
SHEEAN P M, PETERSON S J, GOMEZ PEREZ S, et al. The prevalence of sarcopenia in patients with respiratory failure classified as normally nourished using computed tomography and subjective global assessment[J]. JPEN J Parenter Enteral Nutr, 2014, 38(7): 873-879. doi: 10.1177/0148607113500308
|
[38] |
ZHI J H, SHAN Q, LIANG L Y, et al. Low skeletal muscle area as a prognostic marker for chronic obstructive pulmonary disease in elderly patients admitted to ICU[J]. Sci Rep, 2019, 9(1): 19117. doi: 10.1038/s41598-019-55737-z
|
[39] |
HOSTRUP M, REITELSEDER S, JESSEN S, et al. Beta2 -adrenoceptor agonist salbutamol increases protein turnover rates and alters signalling in skeletal muscle after resistance exercise in young men[J]. J Physiol, 2018, 596(17): 4121-4139. doi: 10.1113/JP275560
|
[40] |
LEE P, BIRZNIECE V, UMPLEBY A M, et al. Formoterol, a highly β2-selective agonist, induces gender-dimorphic whole body leucine metabolism in humans[J]. Metabolism, 2015, 64(4): 506-512. doi: 10.1016/j.metabol.2014.12.005
|
[41] |
TOLEDO M, PENNA F, OLIVA F, et al. A multifactorial anti-cachectic approach for cancer Cachexia in a rat model undergoing chemotherapy[J]. J Cachexia Sarcopenia Muscle, 2016, 7(1): 48-59. doi: 10.1002/jcsm.12035
|
[42] |
ABRIGO J, MAR? N T, AGUIRRE F, et al. N-acetyl cysteine attenuates the sarcopenia and muscle apoptosis induced by chronic liver disease[J]. Curr Mol Med, 2019, 20(1): 60-71. doi: 10.2174/1566524019666190917124636
|
[43] |
SAKUMA K, YAMAGUCHI A. Recent advances in pharmacological, hormonal, and nutritional intervention for sarcopenia[J]. Pflugers Arch, 2018, 470(3): 449-460. doi: 10.1007/s00424-017-2077-9
|
[44] |
ROCHESTER C L, VOGIATZIS I, HOLLAND A E, et al. An official American thoracic society/European respiratory society policy statement: enhancing implementation, use, and delivery of pulmonary rehabilitation[J]. Am J Respir Crit Care Med, 2015, 192(11): 1373-1386. doi: 10.1164/rccm.201510-1966ST
|
[45] |
MADDOCKS M, KON S S, CANAVAN J L, et al. Physical frailty and pulmonary rehabilitation in COPD: a prospective cohort study[J]. Thorax, 2016, 71(11): 988-995. doi: 10.1136/thoraxjnl-2016-208460
|
[46] |
VAN WETERING C R, HOOGENDOORN M, BROEKHUIZEN R, et al. Efficacy and costs of nutritional rehabilitation in muscle-wasted patients with chronic obstructive pulmonary disease in a community-based setting: a prespecified subgroup analysis of the INTERCOM trial[J]. J Am Med Dir Assoc, 2010, 11(3): 179-187. doi: 10.1016/j.jamda.2009.12.083
|
[47] |
GURGUN A, DENIZ S, ARGIN M, et al. Effects of nutritional supplementation combined with conventional pulmonary rehabilitation in muscle-wasted chronic obstructive pulmonary disease: a prospective, randomized and controlled study[J]. Respirology, 2013, 18(3): 495-500. doi: 10.1111/resp.12019
|
[48] |
TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031. doi: 10.1038/nature05414
|
[49] |
LOPEZ-SILES M, DUNCAN S H, GARCIA-GIL L J, et al. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics[J]. Isme J, 2017, 11(4): 841-852. doi: 10.1038/ismej.2016.176
|
[50] |
BINDELS L B, BECK R, SCHAKMAN O, et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model[J]. PLoS One, 2012, 7(6): e37971. doi: 10.1371/journal.pone.0037971
|
[51] |
BUIGUES C, FERN? NDEZ-GARRIDO J, PRUIMBOOM L, et al. Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial[J]. Int J Mol Sci, 2016, 17(6): 932-935. doi: 10.3390/ijms17060932
|
[52] |
TOOLE P W, MARCHESI J R, HILL C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics[J]. Nat Microbiol, 2017, 2: 17057. doi: 10.1038/nmicrobiol.2017.57
|